2.3 Functions

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. If f is a function from A to B, we write $f: A \to B$.

Domain, Codomain, Image, Preimage, Range

```
A function from A to B:

f:A \to B

A is the domain

B is the codomain

a \in A, b \in B such that f(a) = b

a is the preimage of b under f

b is the image of a under f
```

The range is a specific subset of the Codomain(B) containing the actual values the function outputs.

The *range* can be written as f(A).

Injection (One-to-One)

A function where each element in the Domain maps to a single, unique element in the Codomain. [Domain and Range have the same cardinality]. Strictly increasing or strictly decreasing functions are one-to-one.

Surjection (Onto)

A function where every element in the Codomain is a valid output of the function. [Range is equal to Codomain].

Bijection

A function that is both an injection and a surjection.

Identity Function

A function that maps $f: A \to A$, such that f(a) = a where $a \in A$.

Inverse Function

Given the bijective function f, such that $f:A\to B$ and f(a)=b where $a\in A$ and $b\in B$, the inverse function is defined as f^{-1} , such that $f^{-1}:B\to A$ and $f^{-1}(b)=a$.

Composition

Given two functions, f and g, such that the range of g is a subset of the domain of f, the *composition* of f with g ($f \circ g$) is defined as f(g(x)), with $x \in (g's \text{ domain})$.

Floor Function

 $\lfloor x \rfloor$ returns the largest integer $\leq x$.

Ceiling Function

 $\lceil x \rceil$ returns the smallest integer $\geq x$.

2.3 pg 153 # 13

Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is onto (surjective).

a)
$$f(n) = n - 1$$

This is surjective since every integer is 1 less than some integer.

b)
$$f(n) = n^2 + 1$$

Not surjective because the range cannot include negative integers.

c)
$$f(n) = n^3$$

Not surjective because any element in the codomain that is not a perfect cube will not be mapped to.

2.3 pg 153 # 23

Determine the type of each function from $\mathbb R$ to $\mathbb R$

a)
$$f(x) = 2x + 1$$

Bijective. This is injective because for every $a \neq b$, we have $f(a) \neq f(b)$ (every number is 1 more than 2 times some number). We also know that the function is surjective because the range is all real numbers from 2((y-1)/2) + 1 = y.

b)
$$f(x) = x^2 + 1$$

Not injective and not surjective. We know the function is not injective because we can have the same value for f(x) given two different x values. For example, $f(2) = 2^2 + 1 = 5$ and $f(-2) = (-2)^2 + 1 = 5$. The function is also not surjective because the range is all real numbers greater than or equal to 1, or can be written as $[1, \infty)$.

c)
$$f(x) = x^3$$

Bijective. This is injective because for every $a \neq b$, we have $f(a) \neq f(b)$ (every number is the cube of some number). We also know that the function is surjective because the range is all real numbers from $(y^{1/3})^3 = y$.

d)
$$f(x) = (x^2 + 1)/(x^2 + 2)$$

Not injective and not surjective. We know the function is not injective because we can have the same value for f(x) given two different x values. The function is also not surjective because the range is only [0.5, 1).

Extra Problem

Given the following functions f and g, from \mathbb{R} to \mathbb{R} , find $f \circ g$.

a)
$$f(x) = x^2$$

 $g(x) = x + 1$
 $(f(g(x)) = f(x+1) = (x+1)^2$

b)
$$f(x) = 2x + 1$$

 $g(x) = x^2 + 4x + 4$
 $(f(g(x))) = f(x^2 + 4x + 4) = 2(x^2 + 4x + 4) + 1 = 2x^2 + 8x + 9$

c)
$$f(x) = \{(1,3), (2,4), (5,6), (4,8)\}$$

 $g(x) = \{(1,1), (4,5), (6,2)\}$
 $(f \circ g) = \{(1,3), (4,6), (6,4)\}$

2.3 pg 154 # 31

Let
$$f(x) = \lfloor x^2/3 \rfloor$$
. Find $f(S)$ if

c)
$$S = \{1, 5, 7, 11\}$$

 $f(1) = \lfloor 1^2/3 \rfloor = \lfloor 1/3 \rfloor = 0$
 $f(5) = \lfloor 5^2/3 \rfloor = \lfloor 25/3 \rfloor = 8$
 $f(7) = \lfloor 7^2/3 \rfloor = \lfloor 49/3 \rfloor = 16$
 $f(11) = \lfloor 11^2/3 \rfloor = \lfloor 121/3 \rfloor = 40$
Therefore, $f(S) = \{0, 8, 16, 40\}$

d)
$$S = \{2, 6, 10, 14\}$$

 $f(2) = \lfloor 2^2/3 \rfloor = \lfloor 4/3 \rfloor = 1$
 $f(6) = \lfloor 6^2/3 \rfloor = \lfloor 36/3 \rfloor = 12$
 $f(10) = \lfloor 10^2/3 \rfloor = \lfloor 100/3 \rfloor = 33$
 $f(14) = \lfloor 14^2/3 \rfloor = \lfloor 196/3 \rfloor = 65$
Therefore, $f(S) = \{1, 12, 33, 65\}$

2.3 pg 154 # 43

Let
$$g(x) = \lfloor x \rfloor$$
. Find

a)
$$g^{-1}(\{0\})$$

We need to find the set of all numbers whose floor is 0. Since all number from 0 to 1 (including 0 and excluding 1) round down to 0, then $g^{-1}(\{0\}) = \{x \mid 0 \le x < 1\}$

b) $g^{-1}(\{-1,0,1\})$

We know that the numbers from -1 to 2 (exclusive) round down to either -1, 0, or 1, then $g^{-1}(\{-1,0,1\})=\{x\mid -1\leq x<2\}$

c) $g^{-1}(\{x \mid 0 < x < 1\})$

Since $g(x) = \lfloor x \rfloor$ will always result in an integer, no value of x will result in a number between 0 and 1. Thus, the image of the inverse function is the empty set, \emptyset

2.3 pg 155 # 69

Find the inverse function of $f(x) = x^3 + 1$.

Solve for x.

$$y = x^3 + 1$$

$$y - 1 = x^3$$

$$(y-1)^{1/3} = x$$

The inverse function function is $f^{-1}(x) = (x-1)^{1/3}$.

Extra Problem

For each function from \mathbb{R} to \mathbb{R} , if the function has a defined inverse, find it.

a) $f(x) = x^2 - 2$

This function is not bijective, so there is no inverse function.

b) f(x) = 3

This function is not bijective, so there is no inverse function.