1.5 Nested Quantifiers

1.5 pg. 65 # 9

Let L(x, y) be the statement "x loves y," where the domain for both x and y consists of all people in the world. Use quantifiers to express each of these statements.

- a) Everybody loves Jerry.
- b) Everybody loves somebody.
- c) There is somebody whom everybody loves.
- d) Nobody loves everybody.
- i Everyone loves himself or herself

1.5 pg. 64 # 5

Let W(x,y) mean that student x has visited website y, where the domain for x consists of all students in your school and the domain for y consists of all websites. Express each of these statements by a simple English sentence.

```
d \exists y(W(Ashok Puri,y) \land W(Cindy Yoon, y))
```

- e $\exists y \forall z (y \neq (\text{David Belcher}) \land (W(\text{David Belcher}, z) \rightarrow W(y, z)))$
- f $\exists x \exists y \forall z (((x \neq y) \land (W(x, z) \leftrightarrow W(y, z))))$

1.5 pg. 66 # 13

Let M(x, y) be "x has sent y an e-mail message" and T(x, y) be "x has telephoned y," where the domain consists for all students in your class. Use quantifiers to express each of these statements.

- k There is a student in your class who has not received an e-mail message from anyone else in the class and who has not been called by any other student in the class.
- 1 Every student in the class has either received an e-mail message or received a telephone call from another student in the class.
- m There are at least two students in your class such that one student has sent the other e-mail and the second student has telephoned the first student

1.5 pg. 67 # 33

Rewrite each of these statements so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives).

a)
$$\neg \forall x \forall y P(x, y)$$

$$d \neg (\exists x \exists y \neg P(x,y) \land \forall x \forall y (Q(x,y))$$