1.4 Predicates and Quantifiers

Predicate Logic

Predicate logic have the following features to express propositions:

- Variables: x, y, z, etc. (the subject of a sentence), can be substituted with an element from a domain.
- Predicates: P, M, etc. (the predicate of a sentence)
- Domain: the collection of values that a variable can take.

Propositions must be definitive (not vague or undefined). So, a Propositional Function is not a Proposition until all variables are defined (or "**bound**").

Example: Let Q(x, y) denote the statement "x + y > 2x"

- Q(x, y) has two unbound variables (x and y), and is not a proposition.
- Q(1,y) = 1 + y > 2 [Not a proposition] one bound variable (x = 1) and one unbound variable (y).
- Q(1,2) = 1 + 2 > 2 [Proposition] two bound variables (x = 1 and y = 2)

Quantifiers

Quantifiers provide a notation that allows us to quantify (count) how many objects in the universe of discourse satisfy the given predicate.

- Universal Quantifier \forall For all elements
- Existential Quantifier ∃ There exists an element

De Morgan's Law for Quantifiers

- $\bullet \neg \forall x P(x) \equiv \exists x \neg P(x)$
- $\bullet \ \neg \exists x P(x) \equiv \forall x \neg P(x)$

1.4 pg. 53 # 5

Let P(x) be the statement "x spends more than five hours every weekday in class," where the domain for x consists of all students. Express each of these quantifications in English.

a) $\exists x P(x)$

There exists a student who spends more than five hours every weekday in class.

b) $\forall x P(x)$

Every student spends more than five hours every weekday in class.

c) $\exists x \neg P(x)$

There exists a student who does not spend more than five hours every weekday in class.

d) $\forall x \neg P(x)$

No student spends more than five hours every weekday in class.

1.4 pg. 53 # 11

Let P(x) be the statement " $x = x^2$." If the domain consists of all the integers, what are these truth values?

a) P(0)

True

c P(2)

False

 $e \exists x P(x)$

True

 $f \forall x P(x)$

False

1.4 pg. 54 # 25

Translate each of these statements into logical expressions using predicates, quantifiers, and logical connectives. The domain of x is all people.

c All your friends are perfect.

Let
$$F(x)$$
 be "x is your friend" and $P(x)$ be "x is perfect." $\forall x (F(x) \rightarrow P(x))$

d At least one of your friends is perfect.

```
Let F(x) be "x is your friend" and P(x) be "x is perfect." \exists x (F(x) \land P(x))
```

1.4 pg. 55 # 33

Express each of these statements using quantifiers. Then form the negation of the statement, so that no negation is to the left of a quantifier. Next, express the negation in simple English. (Do not simply use the phrase "It is not the case that.")

b No rabbit knows calculus.

C(x) ="x knows calculus".

Domain for x is all rabbits.

 $\forall x \neg C(x)$

 $\exists x C(x)$

There exists a rabbit that knows calculus.

c Every bird can fly.

F(x) = "x can fly".

Domain for x is all birds.

 $\forall x F(x)$

 $\exists x \neg F(x)$

There exists a bird who cannot fly.

1.4 pg. 55 # 35

Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.

a $\forall x(x^2 \ge x)$

No counter example. See Example 13 in section 1.4.

 $\mathbf{b} \ \forall x(x > 0 \lor x < 0)$

0. Since 0 is not less than or greater than 0, 0 is a counter example.

 $\mathbf{c} \ \forall x(x=1)$

2. Since 2 is not 1, 2 is a counter example.

1.4 pg. 56 # 59

Let P(x), Q(x), and R(x) be the statements "x is a professor," "x is ignorant," and "x is vain," respectively. Express each of these statements using quantifiers; logical connectives; and P(x), Q(x), and R(x), where the domain consists of all people.

a No professors are ignorant.

$$\forall x (P(x) \to \neg Q(x))$$

b All ignorant people are vain.

$$\forall x (Q(x) \to R(x))$$

c No professors are vain.

$$\forall x (P(x) \to \neg R(x))$$

d Does (c) follow from (a) and (b)?

No because we can have vain professors.