7.3 Bayes’ Theorem

Problem

Two friends want to go hiking on a Wednesday. Unfortunately, the local meteorologist has predicted rain on Wednesday. Suppose the probability that it will rain on a given day is 5%. If it rains, the meteorologist accurately predicts rain 99% of the time. If it doesn't rain, she inaccurately predicts rain 3\% of the time. What is the probability that it will rain on Wednesday? (Hint: use Bayes' theorem).

For a given day, let A be the event "it rained for the given day.", and let B be the event "the meteorologist predicted rain for the given day." Then we're given $p(A)=0.05, p(B \mid A)=0.99$, and $p(B \mid \bar{A})=0.03$. We're asked to find $p(A \mid B)$. We can use Bayes' theorem to accomplish this, which states:

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B \mid A) p(A)+p(B \mid \bar{A}) p(\bar{A})}
$$

Then all we have to do is simply substitute the values we've found. Notice that $p(\bar{A})=1-p(A)=$ $1-0.05=0.95$.

$$
\begin{aligned}
p(A \mid B) & =\frac{0.99 \cdot 0.05}{0.99 \cdot 0.05+0.03 \cdot 0.95} \\
& \approx 0.6346
\end{aligned}
$$

Notice that even though the meteorologist is remarkably accurate, the chance that s / he 's right is still not as high as you might expect if you were to take a guess.

