7.4 Expected Value and Variance

Problem

Suppose you roll a (fair) 6-sided die three times.
(a) Compute $E(X)$.

Let X_{1}, X_{2}, X_{3} be random variables where X_{i} is 0 if the $i^{\text {th }}$ roll is not a 6 , and 1 if it is. Since $X=X_{1}+X_{2}+X_{3}$, we know that:

$$
E(X)=E\left(X_{1}+X_{2}+X_{3}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+E\left(X_{3}\right) .
$$

Notice that for each of the $X_{i} \mathrm{~s}$,

$$
E\left(X_{i}\right)=1 / 6 \cdot 1+5 / 6 \cdot 0=1 / 6
$$

so $E(X)=3 / 6=1 / 2$.
(b) Compute $E\left(X^{2}\right)$.

The possible values for X are $0,1,2$, and 3 , so the possible values for X^{2} are $0,1,4$, and 9 . Consider this table to help us compute $E\left(X^{2}\right)$. Here, k is the number of die rolls showing 6 , so $X^{2}(k)=k^{2}$. We can compute $p\left(X^{2}=k\right)$ by considering three Bernoulli trials with probability of success $1 / 6$ and probability of failure $5 / 6$.

k	$X^{2}(k)=k^{2}$	$p\left(X^{2}=k\right)$
0	0	$C(3,0)(1 / 6)^{0}(5 / 6)^{3}$
1	1	$C(3,1)(1 / 6)^{1}(5 / 6)^{2}$
2	4	$C(3,2)(1 / 6)^{2}(5 / 6)^{1}$
3	9	$C(3,3)(1 / 6)^{3}(5 / 6)^{0}$

Recall that from Rosen that:

$$
E(Y)=\sum_{s \in S} p(s) Y(s)
$$

where S is the sample space of all possible outcomes. Since we span S by considering each of the values of X^{2}, we can compute $E\left(X^{2}\right)$ using the above table:

$$
\begin{aligned}
E\left(X^{2}\right)= & \left(0 \cdot 1(5 / 6)^{3}\right) \\
& +\left(1 \cdot 3(1 / 6)(5 / 6)^{2}\right) \\
& +\left(4 \cdot 3(1 / 6)^{2}(5 / 6)\right) \\
& +\left(9 \cdot 1(1 / 6)^{3}\right) \\
= & \left(3(1 / 6)(5 / 6)^{2}+12(1 / 6)^{2}(5 / 6)+9(1 / 6)^{3}\right) \\
= & 2 / 3
\end{aligned}
$$

(c) Compute $V(X)$.
$E(X)=1 / 2, E(X)^{2}=1 / 4$, so:

$$
V(X)=E\left(X^{2}\right)-E(X)^{2}=2 / 3-1 / 4=5 / 12 .
$$

