7.1 An Introduction to Probability

Finite Probability

If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that is, a subset of S, then the probability of E is $p(E)=\frac{|E|}{|S|}$.

Probabilities of Complements

Let E be an event in a sample space S. The probability of the event $\bar{E}=S-E$, the complementary event of E, is given by $p(\bar{E})=1-p(E)$.

Probabilities of Unions of Events

Let E_{1} and E_{2} be events in the sample space S. Then

$$
p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)
$$

7.1 pg 451 \# 7

What is the probability that when a coin is flipped six times in a row, it lands heads up every time?
Use $p(E)=|E| /|S|$.
$(1 / 2)^{6}=1 / 64$

7.1 pg 451 \# 15

What is the probability that a five-card poker hand contains two pairs (that is, two of each of two different kinds and a fifth card of a third kind)?

In total, there are $C(52,5)$ ways to draw a hand (this is our $|S|$).
We want to choose 2 out of four cards of one value, 2 out of four cards of another value, and one other card not of the first two values (This will be our $|E|$).

First we choose two values, there are 13 values (2 to A), so $C(13,2)$.
Then we want to choose two cards of the first value out of four cards, $C(4,2)$
Again, we want to choose two cards of the second value out of four cards, $C(4,2)$
And finally, choose one card not of the previously selected types (we can't choose the 4 cards of the first value and the 4 cards of the second value), $C(52-8,1)$

So we get:

$$
\begin{aligned}
& \frac{C(13,2) \cdot C(4,2) \cdot C(4,2) \cdot C(44,1)}{C(52,5)} \\
& =\frac{13!/(2!11!) \cdot 4!/(2!2!) \cdot 4!/(2!2!) \cdot 44!/(1!43!)}{52!/(47!5!)} \\
& =198 / 4165 \approx 0.0475
\end{aligned}
$$

7.1 pg 451 \# 23

What is the probability that a positive integer not exceeding 100 selected at random is divisible by 5 or 7?

Use $p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)$
$p\left(E_{1}\right)$ represents the probability of a number being divisible by 5.
$p\left(E_{2}\right)$ represents the probability of a number being divisible by 7 .
$p\left(E_{1} \cap E_{2}\right)$ represents the probability of a number being divisible by 35 (divisible by both 5 and 7)
There are:
$\lfloor 100 / 5\rfloor=20$ positive integers divisible by 5 .
$\lfloor 100 / 7\rfloor=14$ positive integers divisible by 7 .
$\lfloor 100 / 35\rfloor=2$ positive integers divisible by 35 .
$p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)$
$=\frac{20}{100}+\frac{14}{100}-\frac{2}{100}$
$=\frac{32}{100}$

7.1 pg 451 \# 33

What is the probability that Abby, Barry, and Sylvia win the first, second, and third prizes, respectively, in a drawing if 200 people enter a contest and
a) no one can win more than one prize.
$p($ Abbey winning first $)=\frac{1}{200}$
$p($ Barry winning second $)=\frac{1}{199}$
$p($ Sylvia winning third $)=\frac{1}{198}$

$$
\begin{aligned}
& \frac{1}{200} \cdot \frac{1}{199} \cdot \frac{1}{198} \\
& =\frac{1}{7880400}
\end{aligned}
$$

b) winning more than one prize is allowed.
$p($ Abbey winning first $)=\frac{1}{200}$
$p($ Barry winning second $)=\frac{1}{200}$
$p($ Sylvia winning third $)=\frac{1}{200}$

ICS 141: Discrete Mathematics I (Fall 2014)

$$
\begin{aligned}
& \frac{1}{200} \cdot \frac{1}{200} \cdot \frac{1}{200} \\
& =\frac{1}{8000000}
\end{aligned}
$$

