1.3 Propositional Equivalences

Tautologies, Contradictions, and Contingencies

- A *tautology* is a compound proposition which is always true.
- A *contradiction* is a compound proposition which is always false.
- A *contingency* is a compound proposition which is neither a tautology nor a contradiction.

Logical Equivalences

Identity	Name	
$ \begin{array}{c} p \wedge \mathbf{T} \equiv p \\ p \vee \mathbf{F} \equiv p \end{array} $	Identity Laws	
$ \begin{array}{c} p \lor \mathbf{T} \equiv \mathbf{T} \\ p \land \mathbf{F} \equiv \mathbf{F} \end{array} $	Domination laws	
$ \begin{array}{c} p \lor p \equiv p \\ p \land p \equiv p \end{array} $	Idempotent laws	
$\neg(\neg p) \equiv p$	Double negation law	
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws	
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws	
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws	
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws	

Logical Equivlances Involving Condi-
tional Statements
$p \to q \equiv \neg p \lor q$
$p \to q \equiv \neg q \to \neg p$
$p \lor q \equiv \neg p \to q$
$p \land q \equiv \neg(p \to \neg q)$
$\neg (p \to q) \equiv q \land \neg q$
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

Logical Equivalences Involving Bicondi-
tional Statements
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Constructing New Logical Equivalences

We can construct new logical equivalences by applying known logically equivalent statements to show that $A \equiv B$.

Recall that two propositions p and q are logically equivalent if and only if $p \leftrightarrow q$ is a tautology (a.k.a. their truth tables match). However, for very long or complex propositions, it might be less work to do a proof of logical equivalence.

Goal: Get both sides to be the same. **Strategy:**

- Apply rules from the list of Logical Equivalences to manipulate one side of the proposition
- Apply one rule per line
- Keep applying rules until we arrive at our goal

1.3 pg. 34 # 7

Use De Morgan's laws to find the negation of each of the following statements.

a) Jan is rich and happy.

```
p = "Jan is rich"

q = "Jan is happy"

p \wedge q

\neg (p \wedge q) \equiv \neg p \vee \neg q

"Jan is not rich, or not happy."
```

b) Mei walks or takes the bus to class.

```
p = "Mei walks to class"

q = Mei takes the bus to class."

p \lor q

\neg(p \lor q) \equiv \neg p \land \neg q
```

"Mei does not walk to class, and Mei does not take the bus to class."

1.3 pg. 35 # 11

Show that each conditional statement is a tautology without using truth tables

$$\begin{array}{ll} \mathbf{b} \;\; p \to (p \vee q) \\ p \to (p \vee q) \\ \equiv \neg p \vee (p \vee q) \quad \text{Law of Implication} \\ \equiv (\neg p \vee p) \vee q \quad \text{Associative Law} \\ \equiv \mathbf{T} \vee q \quad \text{Negation Law} \\ \equiv \mathbf{T} \quad \text{Domination law} \end{array}$$

d
$$(p \land q) \rightarrow (p \rightarrow q)$$

 $(p \land q) \rightarrow (p \rightarrow q)$
 $\equiv \neg (p \land q) \lor (p \rightarrow q)$ Law of Implication
 $\equiv \neg (p \land q) \lor (\neg p \lor q)$ Law of Implication
 $\equiv (\neg p \lor \neg q) \lor (\neg p \lor q)$ De Morgan's Law
 $\equiv (\neg p) \lor (\neg q \lor (\neg p \lor q))$ Associative Law
 $\equiv (\neg p) \lor (\neg p \lor q) \lor \neg q)$ Commutative Law
 $\equiv (\neg p) \lor (\neg p \lor q) \lor \neg q)$ Associative Law
 $\equiv (\neg p) \lor (\neg p \lor q)$ Negation Law
 $\equiv (\neg p) \lor (\neg p \lor T)$ Negation Law
 $\equiv (\neg p) \lor (T)$ Domination Law
 $\equiv T$ Domination Law

$$\begin{array}{cccc}
 & \neg (p \rightarrow q) \rightarrow \neg q \\
 & \neg (p \rightarrow q) \rightarrow \neg q \\
 & \equiv \neg \neg (p \rightarrow q) \vee \neg q \\
 & \equiv (p \rightarrow q) \vee \neg q \\
 & \equiv (p \rightarrow q) \vee \neg q
 \end{array}
 \begin{array}{cccc}
 & \text{Law of Implication} \\
 & \text{Double Negation} \\
 & \equiv (p \rightarrow q) \vee \neg q \\
 & \text{Law of Implication} \\
 & \equiv \neg p \vee (q \vee \neg q) \\
 & \equiv \neg p \vee \mathbf{T}
 \end{array}
 \begin{array}{ccccc}
 & \text{Negation Law} \\
 & \text{Domination Law}
 \end{array}$$

1.3 pg. 35 # 15

Determine whether $(\neg q \land (p \rightarrow q)) \rightarrow \neg p)$ is a tautology.

\overline{p}	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \land (p \to q))$	
T	T	F	F	T	F	T
T	F	F	T	F	F	T
F	T	T	F	T	F	T
F	F	T	T	T	T	T

1.3 pg. 35 # 17

Show that $\neg(p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logically equivalent.

p	q	$\neg q$	$p \leftrightarrow q$	$\neg(p \leftrightarrow q)$	$p \leftrightarrow \neg q$
T	T	F	T	F	F
T	F	Т	F	T	T
F	T	F	F	T	T
F	F	T	T	F	F