5.1 Mathematical Induction

The Principle of Mathematical Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis Step: We verify that P(1) is true.
- Inductive Step: We show that the conditional statement $P(k) \to P(k+1)$ is true for all positive integers k.

Outline of an Inductive Proof

Let us say we want to prove $\forall n \geq b, P(n)$ where $b \in \mathbb{Z}$

- Do the base case (or basis step): Prove P(b).
- Do the inductive step: Prove $\forall k \geq b, P(k) \rightarrow P(k+1)$.
 - E.g. you could use a direct proof as follows:
 - Let k > b, assume P(k). (inductive hypothesis)
 - Now, under this assumption, prove P(k+1).
- The inductive inference rule then gives us $\forall n \geq b, P(n)$.

5.1 pg 329 # 5

Prove that $1^2 + 3^2 + 5^2 + \dots + (2n+1)^2 = (n+1)(2n+1)(2n+3)/3$ whenever n is a nonnegative integer.

Proof by Induction on n.

Basis step:
$$n = 0$$

 $(2 \cdot 0 + 1)^2 = (0 + 1)(2 \cdot 0 + 1)(2 \cdot 0 + 3)/3$
 $1^2 = 1 \cdot 1 \cdot 3/3$
 $1 = 1$

Inductive Step: Assume that n = k.

Inductive Hypothesis:
$$1^2 + 3^2 + 5^2 + \dots + (2k+1)^2 = \frac{(k+1)(2k+1)(2k+3)}{3}$$

Prove that $1^2 + 3^2 + 5^2 + \dots + (2k+1)^2 + (2k+3)^2 = \frac{(k+2)(2k+3)(2k+5)}{3}$

LHS:
$$1^2 + 3^2 + 5^2 + \dots + (2k+1)^2 + (2k+3)^2$$

= $\frac{(k+1)(2k+1)(2k+3)}{3} + (2k+3)^2$ by inductive hypothesis
= $(2k+3)[\frac{(k+1)(2k+1)}{3} + (2k+3)]$

$$= (2k+3)\frac{(k+1)(2k+1) + 3(2k+3)}{3}$$

$$= (2k+3)\frac{(2k^2+3k+1) + (6k+9)}{3}$$

$$= \frac{(2k+3)(2k^2+9k+10)}{3}$$

$$= \frac{(2k+3)(2k+5)(k+2)}{3}$$
Therefore, $1^2 + 3^2 + 5^2 + \dots + (2n+1)^2 = (n+1)(2n+1)(2n+3)/3$ for all $n \ge 0$.

5.1 pg 328 # 7

Prove that $3+3\cdot 5+3\cdot 5^2+\cdots+3\cdot 5^n=3(5^{n+1}-1)/4$ whenever n is a nonnegative integer.

Proof by Induction on n.

Basis Step:
$$n = 0$$

 $3 \cdot 5^0 = 3(5^{0+1} - 1)/4$
 $3 = 3(5 - 1)/4$
 $3 = 3$

Inductive step: Assume that n = k

Inductive Hypothesis:
$$3 + 3 \cdot 5 + 3 \cdot 5^2 + \dots + 3 \cdot 5^k = \frac{3(5^{k+1} - 1)}{4}$$

Prove that $3 + 3 \cdot 5 + 3 \cdot 5^2 + \dots + 3 \cdot 5^k + 3 \cdot 5^{k+1} = \frac{3(5^{k+2} - 1)}{4}$

LHS:
$$3 + 3 \cdot 5 + 3 \cdot 5^2 + \dots + 3 \cdot 5^k + 3 \cdot 5^{k+1}$$

$$= \frac{3(5^{k+1} - 1)}{4} + 3 \cdot 5^{k+1} \text{ by inductive hypothesis}$$

$$= \frac{3 \cdot 5^{k+1} - 3}{4} + 3 \cdot 5^{k+1}$$

$$= \frac{3 \cdot 5^{k+1} - 3 + 4 \cdot 3 \cdot 5^{k+1}}{4}$$

$$= \frac{3(5^{k+1} - 1 + 4 \cdot 5^{k+1})}{4}$$

$$= 3[\frac{5^{k+1} + 4 \cdot 5^{k+1}}{4} - \frac{1}{4}]$$

$$= 3[\frac{(5^{k+1})(1 + 4)}{4} - \frac{1}{4}]$$

$$= 3[\frac{5^{k+2} - \frac{1}{4}}{4}]$$

$$= 3[\frac{5^{k+2} - \frac{1}{4}}{4}]$$
Therefore, $3 + 3 \cdot 5 + 3 \cdot 5^2 + \dots + 3 \cdot 5^n = 3(5^n)$

Therefore,
$$3 + 3 \cdot 5 + 3 \cdot 5^2 + \dots + 3 \cdot 5^n = 3(5^{n+1} - 1)/4$$
 for all $n \ge 0$.