5.3 Recursive Definitions

5.3 pg 357 # 1
Find \(f(1), f(2), f(3), \) and, \(f(4) \) if \(f(n) \) is defined recursively by \(f(0) = 1 \) and for \(n = 0, 1, 2, \ldots \)

a) \(f(n + 1) = f(n) + 2 \)

b) \(f(n + 1) = 3f(n) \)

5.3 pg 358 # 7
Give a recursive definition of the sequence \(\{a_n\}, n = 1, 2, 3, \ldots \) if

a) \(a_n = 6n \)

b) \(a_n = 2n + 1 \)

5.3 pg 358 # 25
Give a recursive definition of

a) the set of even integers.

b) the set of positive integers congruent to 2 modulo 3.

c) the set of positive integers not divisible by 5.

5.3 pg 358 # 27
Let \(S \) be the subset of the set of ordered pairs of integers defined recursively by

- Basis Step: \((0, 0) \in S\)

- Recursive Step: If \((a, b) \in S\), then \((a, b+1) \in S\), \((a+1, b+1) \in S\), and \((a+2, b+1) \in S\).

a) List the elements of \(S \) produced by the first four applications of the recursive definition.

c) Use structural induction to show that \(a \leq 2b \) whenever \((a, b) \in S\).

5.3 pg 359 # 37
Give a recursive definition of \(w^i \), where \(w \) is a string and \(i \) is a nonnegative integer. (Here \(w^i \) represents the concatenation of \(i \) copies of the string \(w \).)