5.2 Strong Induction and Well-Ordering

Strong Induction

To prove that \(P(n) \) is true for all positive integers \(n \), where \(P(n) \) is a propositional function, complete two steps:

- **Basis Step**: Verify that the proposition \(P(1) \) is true.
- **Inductive Step**: Show the conditional statement \([P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1) \) is true for all positive integers \(k \).

Generalizing Strong Induction

- Handle cases where the inductive step is valid only for integers greater than a particular integer
 - \(P(n) \) is true for \(\forall n \geq b \) (\(b \): fixed integer)
- **Basis Step**: Verify that \(P(b), P(b+1), \ldots, P(b+j) \) are true (\(j \): a fixed positive integer)
- **Inductive Step**: Show that the conditional statement \([P(b) \land P(b+1) \land \cdots \land P(k)] \rightarrow P(k+1) \) is true for all positive integers \(k \geq b+j \)

5.2 pg 341 # 3

Let \(P(n) \) be the statement that a postage of \(n \) cents can be formed using just 3-cent stamps and 5-cent stamps. The parts of this exercise outline a strong induction proof that \(P(n) \) is true for \(n \geq 8 \).

a) Show that the statements \(P(8), P(9), \) and \(P(10) \) are true, completing the basis step of the proof.

\[
\begin{align*}
8 &= 3 \cdot 1 + 5 \cdot 1 \\
9 &= 3 \cdot 3 + 5 \cdot 0 \\
10 &= 3 \cdot 0 + 5 \cdot 2
\end{align*}
\]

b) What is the inductive hypothesis of the proof?

Any value \(j \) (\(8 \leq j \leq k \)) where \(k \geq 10 \), can be expressed as \(j = 3a + 5b \) with \(a \) and \(b \) being non-negative integers.

c) What do you need to prove in the inductive step?

Assuming the inductive hypothesis, we want to show that we can express \(k + 1 \) as \(3a + 5b \) with \(a \) and \(b \) being nonnegative integers.

d) Complete the inductive step for \(k \geq 10 \).

Since we want to show \(P(k+1) \), we can use \(P(k-2) \), which is true by inductive hypothesis since \(8 \leq k-2 \leq k \).
\[k - 2 = 3a + 5b \]
\[k - 2 + 3 = 3a + 4b + 3 \]
\[k + 1 = 3(a + 1) + 5b \]

Explanation:
Our base cases: 8, 9, and 10 can generate any integer value when a multiple of three is added.

e.g.
\[8 + 3 = 11 \]
\[9 + 3 = 12 \]
\[10 + 3 = 13 \]

\[8 + 6 = 14 \]
\[9 + 6 = 15 \]
\[10 + 6 = 16 \]

\[\vdots \]
Therefore, by assuming \(k - 2 \) and adding a 3-cent stamp, we can get to \(k + 1 \) cents of postage.

e) Explain why these steps show that this statement is true whenever \(n \geq 8 \).

We have completed both the basis step and the inductive step, so by the principle of strong induction, the statement is true for every integer \(n \) greater than or equal to 8.

5.2 pg 342 #7

What amounts of money can be formed using just two-dollar bills and five-dollar bills? Prove your answer using strong induction.

2 dollars can also be formed, which can be proved separately.

\[4 = 2 \cdot 2 + 5 \cdot 0 \]
\[5 = 2 \cdot 0 + 5 \cdot 1 \]
\[6 = 2 \cdot 3 + 5 \cdot 0 \]
\[7 = 2 \cdot 1 + 5 \cdot 1 \]
\[8 = 2 \cdot 4 + 5 \cdot 0 \]
\[9 = 2 \cdot 2 + 5 \cdot 1 \]
\[10 = 2 \cdot 5 + 5 \cdot 0 \]

Inductive hypothesis: \(P(j) = \) any value \(j \) (\(4 \leq j \leq k \)), can be expressed as \(j = 2a + 5b \) with \(a \) and \(b \) being non-negative integers.

Basis Step: \(P(4) \) and \(P(5) \) are true (see above).

Inductive step:
Assume that for \(5 \leq k \), \(P(k - 1) \) is true.
\[k - 1 = 2a + 5b \]
\[k - 1 + 2 = 2a + 5b + 2 \]
\[k + 1 = 2(a + 1) + 5b \]
This completes the inductive step.

Therefore, by the principle of strong induction, \(P(n) \) is true for all \(n \geq 4 \).

Explanation:
From \(P(4) \) and \(P(5) \), we can add a multiple of two (using 2-dollar bills) and reach any positive integer value \(\geq 4 \).

5.2 pg 343 # 25

Suppose that \(P(n) \) is a propositional function. Determine for which positive integers \(n \) the statement \(P(n) \) must be true, and justify your answer, if

a) \(P(1) \) is true; for all positive integers \(n \), if \(P(n) \) is true, then \(P(n + 2) \) is true.

\[P(1) \] is true, so \(P(1 + 2) \) is true, according to the statement.
\[P(3) \] is true, so \(P(3 + 2) \) is true.
\[P(5) \] is true, so \(P(5 + 2) \) is true.
\[P(n) \] is true when \(n = 1, 3, 5, 7, 9, \ldots \)

b) \(P(1) \) and \(P(2) \) are true; for all positive integers \(n \), if \(P(n) \) and \(P(n + 1) \) are true, then \(P(n + 2) \) is true.

\[P(1) \] and \(P(1 + 1) \) are true, so \(P(1 + 2) \) is true too.
\[P(2) \] and \(P(2 + 1) \) are true, so \(P(2 + 2) \) is true too.
\[P(3) \] and \(P(3 + 1) \) are true, so \(P(3 + 2) \) is true too.
\[P(4) \] and \(P(4 + 1) \) are true, so \(P(4 + 2) \) is true too.
\[P(n) \] is true when \(n \) is any positive integer.

c) \(P(1) \) is true; for all positive integers \(n \), if \(P(n) \) is true, then \(P(2n) \) is true.

\[P(1) \] is true, so \(P(2 \cdot 1) \) is true.
\[P(2) \] is true, so \(P(2 \cdot 2) \) is true.
\[P(4) \] is true, so \(P(2 \cdot 4) \) is true.
\[P(8) \] is true, so \(P(2 \cdot 8) \) is true.
\[P(n) \] is true when \(n \) is an integer and a power of 2. (i.e. \(n = 2, 4, 8, 16, \ldots \))