2.1 Sets

A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements.

We write \(a \in A \) to denote that \(a \) is an element of the set \(A \). The notation \(a \notin A \) denotes that \(a \) is not an element of the set \(A \).

Two sets are equal if and only if they have the same elements. We write \(A = B \) if \(A \) and \(B \) are equal sets.

Empty Set

The empty set or null set is the set with no elements. Denoted by \(\emptyset \) or \{ \}.

Other Special Sets

\(\mathbb{N} = \{0, 1, 2, 3, \ldots\} \), the set of natural numbers
\(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \), the set of integers
\(\mathbb{Z}^+ = \{1, 2, 3, \ldots\} \), the set of positive integers
\(\mathbb{Q} = \{p/q | p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } q \neq 0\} \), the set of rational numbers
\(\mathbb{R} \), the set of real numbers
\(\mathbb{R}^+ \), the set of positive real numbers
\(\mathbb{C} \), the set of complex numbers.

Subset

The set \(A \) is a subset of \(B \) if and only if every element of \(A \) is also an element of \(B \). We use the notation \(A \subseteq B \) to indicate that \(A \) is a subset of the set \(B \).

To show that \(A \subsetneq B \), find a single \(x \in A \) such that \(x \notin B \).

Note that \(\emptyset \) is the subset of every set.

Proper Subset

To show that \(A \) is a subset of \(B \) and \(A \neq B \), we use \(A \subset B \) to denote proper subset. \(A \subset B \) says that \(A \) is a proper subset of \(B \).

Cardinality

The cardinality of a set is the number of distinct elements within the set. The cardinality of set \(A \) is \(|A| \). Note that \(|\emptyset| = 0 \).
Power Sets

The set of all subsets of a set \(A \), denoted \(\rho(A) \), is called the power set of \(A \).

Cartesian Product

The Cartesian Product of two sets \(A \) and \(B \), denoted by \(A \times B \), is the set of ordered pairs \((a, b) \) where \(a \in A \) and \(b \in B \).

Note that \(A \times B \neq B \times A \).

2.1 pg 125 # 1

List the members of these sets.

\[\{ x \mid x \text{ is the square of an integer and } x < 100 \} \]
\[\{ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 \} \]

\[\{ x \mid x \text{ is an integer such that } x^2 = 2 \} \]
\[\emptyset \text{ or } \{ \} \]

2.1 pg 125 # 5

Determine whether each pairs of sets are equal.

\[\{ 1, 3, 3, 3, 5, 5, 5, 5, 5 \}, \{ 5, 3, 1 \} \]
Yes

\[\{ \{ 1 \} \}, \{ 1, \{ 1 \} \} \]
No

\[\emptyset, \{ \emptyset \} \]
No

2.1 pg 125 # 9

Determine whether each of these statements is true or false.

\[0 \in \emptyset \]
False

\[\emptyset \in \{ 0 \} \]
False

\[\emptyset \subset \{ 0 \} \]
True
2.1 pg 125 # 11

Determine whether each of these statements is true or false.

a \(x \in \{x\} \)
 True

b \(\{x\} \subseteq \{x\} \)
 True

c \(\{x\} \in \{x\} \)
 False

d \(\{x\} \in \{\{x\}\} \)
 True

e \(\emptyset \subseteq \{x\} \)
 True

f \(\emptyset \in \{x\} \)
 False

2.1 pg 126 # 19

What is the cardinality of each of these sets?

b \(\{\{a\}\} \)
 1

c \(\{a, \{a\}\} \)
 2

d \(\{a, \{a\}, \{a, \{a\}\}\} \)
 3
2.1 pg 126 # 21

Find the power set of each of these sets, where \(a \) and \(b \) are distinct elements.

\[
\begin{align*}
a &\quad \{a\} \\
&\quad \{\emptyset, \{a\}\} \\
b &\quad \{a, b\} \\
&\quad \{\emptyset, \{a\}, \{b\}, \{a, b\}\}
\end{align*}
\]

2.1 pg 126 # 39

Explain why \(A \times B \times C \) and \((A \times B) \times C \) are not the same.

First, \(A \times B \times C \) consists of 3-tuples \((a, b, c)\), where \(a \in A \), \(b \in B \), and \(c \in C \). Next, \((A \times B) \times C\) contains the elements \([(a, b), c]\), which is a set of ordered pairs with one of them being an ordered pair. An ordered pair and a 3-tuple are two different collections.