12.1 Boolean Functions

Boolean algebra provides the operations and rules for working with the set $\{0, 1\}$.

Boolean Complement

- $\overline{x} \equiv \neg x$
- $\overline{0} = 1$
- $\overline{1} = 0$

Boolean Sum

- $x + y \equiv x \lor y$
- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 0 = 1
- 1 + 1 = 1

Boolean Product

- $x \cdot y \equiv x \wedge y$
- $0 \cdot 0 = 0$
- $0 \cdot 1 = 0$
- $1 \cdot 0 = 0$
- $1 \cdot 1 = 1$

Boolean Functions

Let $B = \{0,1\}$. Then $B^n = \{(x_1, x_2, ..., x_n) | x_i \in B \text{ for } 1 \le i \le n\}$ is the set of all possible *n*-tuples of 0s and 1s. The variable *x* is called a *Boolean variable* if it assumes values only from *B*, that is, if its only possible values are 0 and 1. A function from B^n to *B* is called a *Boolean function of degree n*.

Boolean Expressions

The *Boolean expressions* in the variables, x_1, x_2, \ldots, x_n are defined recursively as $0, 1, x_1, x_2, \ldots, x_n$ are Boolean expressions; if E_1 and E_2 are Boolean expressions, then $\overline{E}_1, (E_1E_2)$, and $(E_1 + E_2)$ are Boolean expressions. Each Boolean expression represents a Boolean function.

Identity	Name				
$\overline{\overline{x}} = x$	Law of the double complement				
x + x = x	Idempotent laws				
$x \cdot x = x$	Idempotent laws				
x + 0 = x	Identity laws				
$x \cdot 1 = x$	Identity laws				
x + 1 = 1	Domination laws				
$x \cdot 0 = 0$					
x + y = y + x	Commutative laws				
xy = yx					
x + (y+z) = (x+y) + z	Associative laws				
x(yz) = (xy)z					
x + yz = (x + y)(x + z)	Distributive laws				
x(y+z) = xy + xz					
$\overline{(xy)} = \overline{x} + \overline{y}$	De Morgan's laws				
$\overline{(x+y)} = \bar{x}\bar{y}$	De Morgan s laws				
$x + \overline{x} = 1$	Unit property				
$x\overline{x} = 0$	Zero property				

Boolean Identities

Duality

The *dual* of a Boolean expression is obtained by interchanging Boolean sums and Boolean products and interchanging 0s and 1s.

Abstract Definition of Boolean Algebra

A general *Boolean algebra* is a set B with elements 0 and 1, two binary operators \land and \lor , and a unary operator \neg that satisfies the following laws for all x, y, and z in B:

- Identity laws:
 - $x \lor 0 = x$ $x \land 1 = x$
- Complement laws:

$$- x \lor \neg x = 1$$

-
$$x \wedge \neg x = 0$$

• Associative laws:

$$- (x \lor y) \lor z = x \lor (y \lor z)$$

$$- (x \land y) \land z = x \land (y \land z)$$

• Commutative laws:

- $x \lor y = y \lor x$
- $x \wedge y = y \wedge x$
- Distributive laws:

-
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

- $x \land (y \lor z) = (x \land y) \lor (x \land z)$

12.1 pg. 818 # 5

Use a table to express the values of each of these Boolean functions.

a)
$$F(x, y, z) = \overline{x}y$$

x	y	z	\overline{x}	$\overline{x}y$
1	1	1	0	0
1	1	0	0	0
1	0	1	0	0
1	0	0	0	0
0	1	1	1	1
0	1	0	1	1
0	0	1	1	0
0	0	0	1	0

b) F(x, y, z) = x + yz

x	y	z	yz	x + yz
1	1	1	1	1
1	1	0	0	1
1	0	1	0	1
1	0	0	0	1
0	1	1	1	1
0	1	0	0	0
0	0	1	0	0
0	0	0	0	0

c) $F(x, y, z) = x\overline{y} + \overline{(xyz)}$

x	y	z	\overline{y}	$x\overline{y}$	xyz	$\overline{(xyz)}$	$x\overline{y} + \overline{(xyz)}$
1	1	1	0	0	1	0	0
1	1	0	0	0	0	1	1
1	0	1	1	1	0	1	1
1	0	0	1	1	0	1	1
0	1	1	0	0	0	1	1
0	1	0	0	0	0	1	1
0	0	1	1	0	0	1	1
0	0	0	1	0	0	1	1

d) $F(x,y,z) = x(yz + \bar{y}\bar{z})$

x	y	z	\overline{y}	\overline{z}	yz	$\bar{y}\bar{z}$	$yz + \bar{y}\bar{z}$	$x(yz + \bar{y}\bar{z})$
1	1	1	0	0	1	0	1	1
1	1	0	0	1	0	0	0	0
1	0	1	1	0	0	0	0	0
1	0	0	1	1	0	1	1	1
0	1	1	0	0	1	0	1	0
0	1	0	0	1	0	0	0	0
0	0	1	1	0	0	0	0	0
0	0	0	1	1	0	1	1	0

12.1 pg. 818 # 9

What values of the Boolean variables x and y satisfy xy = x + y?

xy = x + y is only satisfied if and only if x = y. We can easily see that when x = y = 0 or when x = y = 1 is when the equation is satisfied.

12.1 pg. 818 # 11

Prove the absorption law x + xy = x using the other laws.

x + xy= $x \cdot 1 + xy$ by identity law = x(1 + y) by distributive law = x(y + 1) by commutative law = $x \cdot 1$ by domination law = x by identity law

12.1 pg. 818 # 13

Show that $x\overline{y} + y\overline{z} + \overline{x}z = \overline{x}y + \overline{y}z + x\overline{z}$.

Simply create a table and list the values.

x	y	z	\overline{x}	\overline{y}	\overline{z}	$x\overline{y}$	$y\overline{z}$	$\overline{x}z$	$\overline{x}y$	$\overline{y}z$	$x\overline{z}$	$x\overline{y} + y\overline{z} + \overline{x}z$	$\overline{x}y + \overline{y}z + x\overline{z}$
1	1	1	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	1	0	1	0	0	0	1	1	1
1	0	1	0	1	0	1	0	0	0	1	0	1	1
1	0	0	0	1	1	1	0	0	0	0	1	1	1
0	1	1	1	0	0	0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1	0	1	0	0	1	1
0	0	1	1	1	0	0	0	1	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	0	0	0	0