### 12.1 Boolean Functions

Boolean algebra provides the operations and rules for working with the set $\{0,1\}$.

## Boolean Complement

- $\bar{x} \equiv \neg x$
- $\overline{0}=1$
- $\overline{1}=0$


## Boolean Sum

- $x+y \equiv x \vee y$
- $0+0=0$
- $0+1=1$
- $1+0=1$
- $1+1=1$


## Boolean Product

- $x \cdot y \equiv x \wedge y$
- $0 \cdot 0=0$
- $0 \cdot 1=0$
- $1 \cdot 0=0$
- $1 \cdot 1=1$


## Boolean Functions

Let $B=\{0,1\}$. Then $B^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in B\right.$ for $\left.1 \leq i \leq n\right\}$ is the set of all possible $n$-tuples of 0 s and 1 s . The variable $x$ is called a Boolean variable if it assumes values only from $B$, that is, if its only possible values are 0 and 1 . A function from $B^{n}$ to $B$ is called a Boolean function of degree $n$.

## Boolean Expressions

The Boolean expressions in the variables, $x_{1}, x_{2}, \ldots, x_{n}$ are defined recursively as $0,1, x_{1}, x_{2}, \ldots, x_{n}$ are Boolean expressions; if $E_{1}$ and $E_{2}$ are Boolean expressions, then $\bar{E}_{1},\left(E_{1} E_{2}\right)$, and $\left(E_{1}+E_{2}\right)$ are Boolean expressions. Each Boolean expression represents a Boolean function.

## Boolean Identities

| Identity | Name |
| :---: | :---: |
| $\overline{\bar{x}}=x$ | Law of the double complement |
| $x+x=x$ <br> $x \cdot x=x$ | Idempotent laws |
| $x+0=x$ <br> $x \cdot 1=x$ | Identity laws |
| $x+1=1$ <br> $x \cdot 0=0$ | Domination laws |
| $x+y=y+x$ <br> $x y=y x$ | Commutative laws |
| $x+(y+z)=(x+y)+z$ <br> $x(y z)=(x y) z$ | Associative laws |
| $x+y z=(x+y)(x+z)$ <br> $x(y+z)=x y+x z$ | Distributive laws |
| $\overline{(x y)=\bar{x}+\bar{y}}$$(x+y)=\bar{x} \bar{y}$ | De Morgan's laws |
| $x+\bar{x}=1$ | Unit property |
| $x \bar{x}=0$ | Zero property |

## Duality

The dual of a Boolean expression is obtained by interchanging Boolean sums and Boolean products and interchanging 0 s and 1 s .

## Abstract Definition of Boolean Algebra

A general Boolean algebra is a set $B$ with elements 0 and 1 , two binary operators $\wedge$ and $\vee$, and a unary operator $\neg$ that satisfies the following laws for all $x, y$, and $z$ in $B$ :

- Identity laws:
$-x \vee 0=x$
- $x \wedge 1=x$
- Complement laws:
$-x \vee \neg x=1$
- $x \wedge \neg x=0$
- Associative laws:
$-(x \vee y) \vee z=x \vee(y \vee z)$
$-(x \wedge y) \wedge z=x \wedge(y \wedge z)$
- Commutative laws:
$-x \vee y=y \vee x$
$-x \wedge y=y \wedge x$
- Distributive laws:

$$
\begin{aligned}
& -x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \\
& -x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
\end{aligned}
$$

## 12.1 pg. 818 \# 5

Use a table to express the values of each of these Boolean functions.
a) $F(x, y, z)=\bar{x} y$

| $x$ | $y$ | $z$ | $\bar{x}$ | $\bar{x} y$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 |

b) $F(x, y, z)=x+y z$

| $x$ | $y$ | $z$ | $y z$ | $x+y z$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

c) $F(x, y, z)=x \bar{y}+\overline{(x y z)}$

| $x$ | $y$ | $z$ | $\bar{y}$ | $x \bar{y}$ | $x y z$ | $\overline{(x y z)}$ | $x \bar{y}+\overline{(x y z)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |

d) $F(x, y, z)=x(y z+\bar{y} \bar{z})$

| $x$ | $y$ | $z$ | $\bar{y}$ | $\bar{z}$ | $y z$ | $\bar{y} \bar{z}$ | $y z+\bar{y} \bar{z}$ | $x(y z+\bar{y} \bar{z})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |

## 12.1 pg. 818 \# 9

What values of the Boolean variables $x$ and $y$ satisfy $x y=x+y$ ?
$x y=x+y$ is only satisfied if and only if $x=y$. We can easily see that when $x=y=0$ or when $x=y=1$ is when the equation is satisfied.

## 12.1 pg. 818 \# 11

Prove the absorption law $x+x y=x$ using the other laws.
$x+x y$
$=x \cdot 1+x y$ by identity law
$=x(1+y)$ by distributive law
$=x(y+1)$ by commutative law
$=x \cdot 1$ by domination law
$=x$ by identity law

## 12.1 pg. 818 \# 13

Show that $x \bar{y}+y \bar{z}+\bar{x} z=\bar{x} y+\bar{y} z+x \bar{z}$.
Simply create a table and list the values.

| $x$ | $y$ | $z$ | $\bar{x}$ | $\bar{y}$ | $\bar{z}$ | $x \bar{y}$ | $y \bar{z}$ | $\bar{x} z$ | $\bar{x} y$ | $\bar{y} z$ | $x \bar{z}$ | $x \bar{y}+y \bar{z}+\bar{x} z$ | $\bar{x} y+\bar{y} z+x \bar{z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

