12.2 Representing Boolean Functions

Literals

A *literal* is a Boolean variable or its complement.

Minterm

A *minterm* of the Boolean variables $x_1, x_2, ..., x_n$ is a Boolean product $y_1y_2...y_n$, where $y_i = x_i$ or $y_i = \overline{x}_i$. Hence, a minterm is a product of n literals, with one literal for each variable.

Disjunctive Normal Form

The *disjunctive normal form* (DNF) of a *degree-n* Boolean function f is the unique sum of minterms of the variables x_1, \ldots, x_n that represents f.

Maxterm

A maxterm of the Boolean variables $x_1, x_2, ..., x_n$ is a Boolean sum $y_1 + y_2 + ... + y_n$, where $y_i = x_i$ or $y_i = \bar{x}_i$. Hence, a maxterm is a sum of n literals, with one literal for each variable.

Conjunctive Normal Form

The conjunctive normal form (CNF) of a degree-n Boolean function f is the unique product of maxterns of the variables x_1, \ldots, x_n that represents f.

Functional Completeness

Since every Boolean function can be expressed in terms of $\cdot, +, \bar{}$, we say that the set of operators $\{\cdot, +, \bar{}\}$ is *functionally complete*. $\{+, \bar{}\}$ and $\{\cdot, \bar{}\}$ are also functionally complete. $\{\cdot, \bar{}\}$ can be represented by the NAND operator | and $\{+, \bar{}\}$ by the NOR operator \downarrow . There fore $\{|\}$ and $\{\downarrow\}$ are also functionally complete.

12.2 pg. 822 # 1

Find a Boolean product of the Boolean variables x, y, and z, or their complements, that has the value 1 if and only if

a) x = y = 0, z = 1

Since x = y = 0, then $\bar{x} = \bar{y} = 1$. The boolean product is simply $\bar{x}\bar{y}z$.

b) x = 0, y = 1, z = 0

 $\bar{x}y\bar{z}$

c) x = 0, y = z = 1 $\bar{x}yz$ d) x = y = z = 0 $\bar{x}\bar{y}\bar{z}$

12.2 pg. 822 # 3

Find the sum-of-products expansions of these Boolean functions.

a) F(x, y, z) = x + y + z

Create the table for the function and take the Boolean sum of the minterm where the function evaluates to 1.

x	y	z	x + y + z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

The DNF is $\bar{x}\bar{y}z + \bar{x}y\bar{z} + \bar{x}yz + x\bar{y}\bar{z} + x\bar{y}z + xy\bar{z} + xyz$

b) F(x, y, z) = (x + z)y

x	y	z	x+z	(x+z)y
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

The DNF is $\bar{x}yz + xy\bar{z} + xyz$

c) F(x, y, z) = x

x	y	z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The DNF is $x\bar{y}\bar{z} + x\bar{y}z + xy\bar{z} + xyz$

d) $F(x, y, z) = x\bar{y}$

x	y	z	\bar{y}	$x\bar{y}$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

The DNF is $x\bar{y}\bar{z} + x\bar{y}z$.

12.2 pg. 822 # 5

Find the sum-of-products expansion of the Boolean function F(w, x, y, z) that has the value 1 if and only if an odd number of w, x, y, and z have the value 1.

Need to produce all the minterms that have an odd number of 1s. The DNF is simply,

 $\bar{w}xyz + w\bar{x}yz + wx\bar{y}z + wxy\bar{z} + \bar{w}\bar{x}\bar{y}z + \bar{w}x\bar{y}\bar{z} + w\bar{x}\bar{y}\bar{z}$

12.2 pg. 822 # 11

Find the product-of-sums expansion of each of the Boolean functions in Exercise 3.

a)
$$F(x, y, z) = x + y + z$$

Create the table for the function and take the Boolean product of the maxterm where the function evaluates to 0.

x	y	z	x + y + z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

This is already in its CNF, x + y + z.

b)
$$F(x, y, z) = (x + z)y$$

x	y	z	x+z	(x+z)y
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

The CNF is $(x + y + z)(x + y + \bar{z})(x + \bar{y} + z)(\bar{x} + y + z)(\bar{x} + y + \bar{z})$

c) F(x, y, z) = x

x	y	z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The CNF is $(x + y + z)(x + y + \bar{z})(x + \bar{y} + z)(x + \bar{y} + \bar{z})$

d) $F(x,y,z) = x\bar{y}$

x	y	z	\bar{y}	$x\bar{y}$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

The CNF is $(x + y + z)(x + y + \bar{z})(x + \bar{y} + z)(x + \bar{y} + \bar{z})(\bar{x} + \bar{y} + z)(\bar{x} + \bar{y} + \bar{z})$

12.2 pg. 822 # 13

Express each of these Boolean functions using the operators + and⁻.

- a) x + y + z
 - x + y + z already satisfies the requirement.
- b) $x + \bar{y}(\bar{x} + z)$

 $x + \bar{y}(\bar{x} + z)$ $= x + \bar{y}\bar{x} + \bar{y}z$ by distributive law $= x + \underbrace{\overline{(y+x)}}_{(y+x)} + \underbrace{\overline{y}z \text{ by De Morgan's law}}_{= x + \underbrace{(y+x)}_{(y+x)} + \underbrace{(y+\overline{z})}_{(y+\overline{z})} \text{ by De Morgan's law}$

c) $\overline{x+\bar{y}}$

 $\overline{x+\bar{y}}$ already satisfies the requirement.

d)
$$\bar{x}(x+\bar{y}+\bar{z})$$

- $\bar{x}(x+\bar{y}+\bar{z})$
- $=(\bar{x}x)+(\bar{x}\bar{y})+(\bar{x}\bar{z})$ by distributive law
- $= 0 + (\bar{x}\bar{y}) + (\bar{x}\bar{z})$ by zero property
- $= (\bar{x}\bar{y}) + (\bar{x}\bar{z})$ by identity law
- $= \underbrace{\overline{(x+y)}}_{(x+y)} + \underbrace{(\bar{x}\bar{z})}_{(x+y)}$ by De Morgan's law = (x+y) + (x+z) by De Morgan's law