12.2 Representing Boolean Functions

Literals

A literal is a Boolean variable or its complement.

Minterm

A minterm of the Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$ is a Boolean product $y_{1} y_{2} \ldots y_{n}$, where $y_{i}=x_{i}$ or $y_{i}=\bar{x}_{i}$. Hence, a minterm is a product of n literals, with one literal for each variable.

Disjunctive Normal Form

The disjunctive normal form (DNF) of a degree- n Boolean function f is the unique sum of minterms of the variables x_{1}, \ldots, x_{n} that represents f.

Maxterm

A maxterm of the Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$ is a Boolean sum $y_{1}+y_{2}+\ldots+y_{n}$, where $y_{i}=x_{i}$ or $y_{i}=\bar{x}_{i}$. Hence, a maxterm is a sum of n literals, with one literal for each variable.

Conjunctive Normal Form

The conjunctive normal form (CNF) of a degree-n Boolean function f is the unique product of maxterms of the variables x_{1}, \ldots, x_{n} that represents f.

Functional Completeness

Since every Boolean function can be expressed in terms of $\cdot,+,{ }^{-}$, we say that the set of operators $\{\cdot,+$,$\} is functionally complete. \{+$,$\} and \{\cdot$,$\} are also functionally complete. \{\cdot$,$\} can be repre-$ sented by the NAND operator \mid and $\{+$,$\} by the NOR operator \downarrow$. There fore $\{\mid\}$ and $\{\downarrow\}$ are also functionally complete.

12.2 pg. 822 \# 1

Find a Boolean product of the Boolean variables x, y,, and z, or their complements, that has the value 1 if and only if
a) $x=y=0, z=1$

Since $x=y=0$, then $\bar{x}=\bar{y}=1$. The boolean product is simply $\bar{x} \bar{y} z$.
b) $x=0, y=1, z=0$
$\bar{x} y \bar{z}$
c) $x=0, y=z=1$
$\bar{x} y z$
d) $x=y=z=0$
$\bar{x} \bar{y} \bar{z}$

12.2 pg. 822 \# 3

Find the sum-of-products expansions of these Boolean functions.
a) $F(x, y, z)=x+y+z$

Create the table for the function and take the Boolean sum of the minterm where the function evaluates to 1 .

x	y	z	$x+y+z$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

The DNF is $\bar{x} \bar{y} z+\bar{x} y \bar{z}+\bar{x} y z+x \bar{y} \bar{z}+x \bar{y} z+x y \bar{z}+x y z$
b) $F(x, y, z)=(x+z) y$

x	y	z	$x+z$	$(x+z) y$
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

The DNF is $\bar{x} y z+x y \bar{z}+x y z$
c) $F(x, y, z)=x$

x	y	z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The DNF is $x \bar{y} \bar{z}+x \bar{y} z+x y \bar{z}+x y z$
d) $F(x, y, z)=x \bar{y}$

x	y	z	\bar{y}	$x \bar{y}$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

The DNF is $x \bar{y} \bar{z}+x \bar{y} z$.

12.2 pg. 822 \# 5

Find the sum-of-products expansion of the Boolean function $F(w, x, y, z)$ that has the value 1 if and only if an odd number of w, x, y, and z have the value 1 .

Need to produce all the minterms that have an odd number of 1s. The DNF is simply,

$$
\bar{w} x y z+w \bar{x} y z+w x \bar{y} z+w x y \bar{z}+\bar{w} \bar{x} \bar{y} z+\bar{w} \bar{x} y \bar{z}+\bar{w} x \bar{y} \bar{z}+w \bar{x} \bar{y} \bar{z}
$$

12.2 pg. 822 \# 11

Find the product-of-sums expansion of each of the Boolean functions in Exercise 3.
a) $F(x, y, z)=x+y+z$

Create the table for the function and take the Boolean product of the maxterm where the function evaluates to 0 .

x	y	z	$x+y+z$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

This is already in its CNF, $x+y+z$.
b) $F(x, y, z)=(x+z) y$

x	y	z	$x+z$	$(x+z) y$
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

The CNF is $(x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(\bar{x}+y+z)(\bar{x}+y+\bar{z})$
c) $F(x, y, z)=x$

x	y	z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The CNF is $(x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(x+\bar{y}+\bar{z})$
d) $F(x, y, z)=x \bar{y}$

x	y	z	\bar{y}	$x \bar{y}$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

The CNF is $(x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(x+\bar{y}+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})$

12.2 pg. 822 \# 13

Express each of these Boolean functions using the operators + and $^{-}$.
a) $x+y+z$
$x+y+z$ already satisfies the requirement.
b) $x+\bar{y}(\bar{x}+z)$

$$
\begin{aligned}
& x+\bar{y}(\bar{x}+z) \\
& =x+\bar{y} \bar{x}+\bar{y} z \text { by distributive law } \\
& =x+\overline{(y+x)}+\bar{y} z \text { by De Morgan's law } \\
& =x+\overline{(y+x)}+\underline{(y+\bar{z})} \text { by De Morgan's law }
\end{aligned}
$$

c) $\overline{x+\bar{y}}$ $\overline{x+\bar{y}}$ already satisfies the requirement.
d) $\bar{x}(x+\bar{y}+\bar{z})$

$$
\bar{x}(x+\bar{y}+\bar{z})
$$

$$
=(\bar{x} x)+(\bar{x} \bar{y})+(\bar{x} \bar{z}) \text { by distributive law }
$$

$$
=0+(\bar{x} \bar{y})+(\bar{x} \bar{z}) \text { by zero property }
$$

$$
=(\bar{x} \bar{y})+(\bar{x} \bar{z}) \text { by identity law }
$$

$=\underline{(x+y)}+\underline{(\bar{x} \bar{z}) \text { by De Morgan's law }}$
$=(x+y)+(x+z)$ by De Morgan's law

