13.3 Finite-State Machines with No Output

13.3 pg. 975 \# 1

Let $A=\{0,11\}$ and $B=\{00,01\}$. Find each of these sets.
a) $A B$
b) $B A$
c) A^{2}

13.3 pg. 975 \# 5

Describe the elements of the set A^{*} for these values of A.
a) $\{10\}$
b) $\{111\}$
c) $\{0,01\}$

13.3 pg. 975 \# 9

Determine whether the string 11101 is in each of these sets.
a) $\{0,1\}^{*}$
b) $\{1\}^{*}\{0\}^{*}\{1\}^{*}$
c) $\{11\}\{0\}^{*}\{01\}$
d) $\{11\}^{*}\{01\}^{*}$
e) $\{111\}^{*}\{0\}^{*}\{1\}$
f) $\{11,0\}\{00,101\}$

13.3 pg. 876 \# 17

Find the language recognized by the given deterministic finite-state automaton.

13.3 pg. 876 \# 19

Find the language recognized by the given deterministic finite-state automaton.

13.3 pg. 876 \# 23

Construct a deterministic finite-state automaton that recognizes the set of all bit strings beginning with 01.
13.3 pg. 876 \# 27

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain exactly three 0s.

13.3 pg. 877 \# 45

Find the language recognized by the given nondeterministic finite-state automaton.

