13.3 Finite-State Machines with No Output

Concatenation

Suppose that A and B are subsets of V^* , where V is a vocabulary. The *concatenation* of A and B, denoted by AB, is the set of all strings of the form xy, where x is a string in A and y is a string in B.

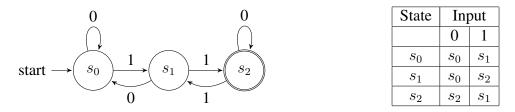
Kleene closure

Suppose that A is a subset of V^* . Then the *Kleene closure* of A, denoted by A^* , is the set consisting of concatenations of arbitrarily many strings from A. That is, $A^* = \bigcup_{k=0}^{\infty} A^k$.

Finite-state Automata

Finite-state automata are finite-state machines with no output. A *finite-state automaton* $M = (S, I, f, s_0, F)$ consists of

- a finite set S of *states*
- a finite input alphabet I
- a transition function $f(f: S \times I \to S)$
- an *initial state* s_0
- a finite set *F* of *final states* (or *accepting states*)



Language Recognition by Finite-State Machines

A string x is said to be *recognized* or *accepted* by the machine $M = (S, I, f, s_0, F)$ if it takes the initial state s_0 to a final state, that is $f(s_0, x)$ is a state in F. The *language recognized* or *accepted* by the machine M, denoted by L(M), is the set of all strings that are recognized by M. Two finite-state automata are called *equivalent* if they recognize the same language.

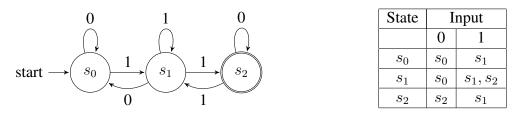
Nondeterministic Finite State Automata

So far we have only discussed *deterministic* finite state automata because each pair of state and input value has a unique next state given by the transition function.

We will now discuss *nondeterministic* finite state automata where there can be several possible next states for each pair of state and input value.

A nondeterministic finite-state automaton $M = (S, f, I, s_0, F)$ consists of

- a finite set S of states
- a finite *input alphabet I*
- a transition function $f(f: S \times I \rightarrow P(S))$
- an *initial state* s_0
- a finite set F of *final states*



Theorem 1

If the language L is recognized by a nondeterministic finite-state automaton M_0 , then L is also recognized by a deterministic finite-state automaton M_1 .

13.3 pg. 975 # 1

Let $A = \{0, 11\}$ and $B = \{00, 01\}$. Find each of these sets.

a) AB AB = {000, 001, 1100, 1101}
b) BA BA = {000, 0011, 010, 0111}
c) A² A² = {00, 011, 110, 1111}

13.3 pg. 975 # 5

Describe the elements of the set A^* for these values of A.

a) {10}

The set of strings where there are zero or more copies of 10, defined as $\{(10)^n | n = 0, 1, 2, ...\}$

b) {111}

The set of strings where there are zero or more copies of 111, defined as $\{1^{3n} | n = 0, 1, 2, ...\}$

c) $\{0,01\}$

The set of strings where every 1 is immediately preceded by a 0.

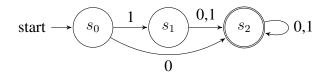
13.3 pg. 975 # 9

Determine whether the string 11101 is in each of these sets.

- a) $\{0,1\}^*$ Yes.
- b) $\{1\}^*\{0\}^*\{1\}^*$ Yes.
- c) $\{11\}\{0\}^*\{01\}$ No.
- d) {11}*{01}*No.
- e) $\{111\}^*\{0\}^*\{1\}$ Yes.
- f) $\{11, 0\}\{00, 101\}$ Yes.

13.3 pg. 876 # 17

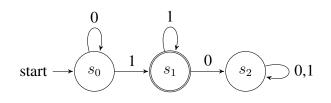
Find the language recognized by the given deterministic finite-state automaton.



The language is $\{0, 10, 11\}\{0, 1\}^*$

13.3 pg. 876 # 19

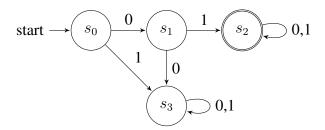
Find the language recognized by the given deterministic finite-state automaton.



The language is $\{0\}^*\{1\}\{1\}^*$

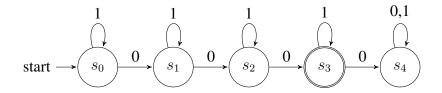
13.3 pg. 876 # 23

Construct a deterministic finite-state automaton that recognizes the set of all bit strings beginning with 01.



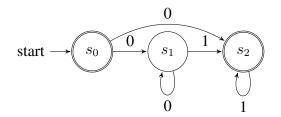
13.3 pg. 876 # 27

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain exactly three 0s.



13.3 pg. 877 # 45

Find the language recognized by the given nondeterministic finite-state automaton.



Since the initial state is an accepting state, we know that the automaton accepts the empty string, λ . We now need to figure how to enter the second accepting state, s_2 . By inspection, we can see that we have two ways to reach there, by s_0 or by going through s_1 . Let us first consider going through s_1 . We can only reach s_2 by inputing one or more 0s followed by one or more 1s. The other way to reach s_2 is to skip s_1 by inputing one 0 and zero or more 1s. Thus, the language recognized is $\{\lambda\} \cup \{0^n 1^m | n, m \ge 1\} \cup \{01^m | m \ge 0\}.$