13.3 Finite-State Machines with No Output

Concatenation

Suppose that A and B are subsets of V^{*}, where V is a vocabulary. The concatenation of A and B, denoted by $A B$, is the set of all strings of the form $x y$, where x is a string in A and y is a string in B.

Kleene closure

Suppose that A is a subset of V^{*}. Then the Kleene closure of A, denoted by A^{*}, is the set consisting of concatenations of arbitrarily many strings from A. That is, $A^{*}=\bigcup_{k=0}^{\infty} A^{k}$.

Finite-state Automata

Finite-state automata are finite-state machines with no output.
A finite-state automaton $M=\left(S, I, f, s_{0}, F\right)$ consists of

- a finite set S of states
- a finite input alphabet I
- a transition function $f(f: S \times I \rightarrow S)$
- an initial state s_{0}
- a finite set F of final states (or accepting states)

State	Input	
	0	1
s_{0}	s_{0}	s_{1}
s_{1}	s_{0}	s_{2}
s_{2}	s_{2}	s_{1}

Language Recognition by Finite-State Machines

A string x is said to be recognized or accepted by the machine $M=\left(S, I, f, s_{0}, F\right)$ if it takes the initial state s_{0} to a final state, that is $f\left(s_{0}, x\right)$ is a state in F. The language recognized or accepted by the machine M, denoted by $L(M)$, is the set of all strings that are recognized by M. Two finite-state automata are called equivalent if they recognize the same language.

Nondeterministic Finite State Automata

So far we have only discussed deterministic finite state automata because each pair of state and input value has a unique next state given by the transition function.
We will now discuss nondeterministic finite state automata where there can be several possible next states for each pair of state and input value.
A nondeterministic finite-state automaton $M=\left(S, f, I, s_{0}, F\right)$ consists of

- a finite set S of states
- a finite input alphabet I
- a transition function $f(f: S \times I \rightarrow P(S))$
- an initial state s_{0}
- a finite set F of final states

State	Input	
	0	1
s_{0}	s_{0}	s_{1}
s_{1}	s_{0}	s_{1}, s_{2}
s_{2}	s_{2}	s_{1}

Theorem 1

If the language L is recognized by a nondeterministic finite-state automaton M_{0}, then L is also recognized by a deterministic finite-state automaton M_{1}.

13.3 pg. 975 \# 1

Let $A=\{0,11\}$ and $B=\{00,01\}$. Find each of these sets.
a) $A B$

$$
A B=\{000,001,1100,1101\}
$$

b) $B A$
$B A=\{000,0011,010,0111\}$
c) A^{2}
$A^{2}=\{00,011,110,1111\}$

13.3 pg. 975 \# 5

Describe the elements of the set A^{*} for these values of A.
a) $\{10\}$

The set of strings where there are zero or more copies of 10 , defined as $\left\{(10)^{n} \mid n=0,1,2, \ldots\right\}$
b) $\{111\}$

The set of strings where there are zero or more copies of 111 , defined as $\left\{1^{3 n} \mid n=0,1,2, \ldots\right\}$
c) $\{0,01\}$

The set of strings where every 1 is immediately preceded by a 0 .

13.3 pg. 975 \# 9

Determine whether the string 11101 is in each of these sets.
a) $\{0,1\}^{*}$

Yes.
b) $\{1\}^{*}\{0\}^{*}\{1\}^{*}$

Yes.
c) $\{11\}\{0\}^{*}\{01\}$

No.
d) $\{11\}^{*}\{01\}^{*}$

No.
e) $\{111\}^{*}\{0\}^{*}\{1\}$

Yes.
f) $\{11,0\}\{00,101\}$

Yes.

13.3 pg. 876 \# 17

Find the language recognized by the given deterministic finite-state automaton.

The language is $\{0,10,11\}\{0,1\}^{*}$

13.3 pg. 876 \# 19

Find the language recognized by the given deterministic finite-state automaton.

The language is $\{0\}^{*}\{1\}\{1\}^{*}$

13.3 pg. 876 \# 23

Construct a deterministic finite-state automaton that recognizes the set of all bit strings beginning with 01.

13.3 pg. 876 \# 27

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain exactly three 0s.

13.3 pg. 877 \# 45

Find the language recognized by the given nondeterministic finite-state automaton.

Since the initial state is an accepting state, we know that the automaton accepts the empty string, λ. We now need to figure how to enter the second accepting state, s_{2}. By inspection, we can see that we have two ways to reach there, by s_{0} or by going through s_{1}. Let us first consider going through s_{1}. We can only reach s_{2} by inputing one or more 0 s followed by one or more 1 s . The other way to reach s_{2} is to skip s_{1} by inputing one 0 and zero or more 1 s . Thus, the language recognized is $\{\lambda\} \cup\left\{0^{n} 1^{m} \mid n, m \geq 1\right\} \cup\left\{01^{m} \mid m \geq 0\right\}$.

