
ICS 241: Discrete Mathematics II (Spring 2015)

13.1 Languages and Grammar

Formal Language

Formal language is a language that is specified by a well-defined set of rules of syntax.

Formal Grammar

A formal grammar G is any compact, precise definition of a language L. A grammar implies an
algorithm that would generate all legal sentences of the language.

Phrase-structure Grammar

First, some definitions.

Vocabulary

A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols.

Word

A word (or sentence) over V is a string of finite length elements of V .

Empty String λ

The empty string or null string, denoted by λ, is the string containing no symbols.

Set of Words & Set of Language

The set of all words over V is denoted by V ∗. A language over V is a subset of V ∗.

Phrase-Structure Grammar

A phrase-structure grammar G = (V, T, S, P) consists of a vocabulary V , a subset T of V con-
sisting of terminal symbols, a start symbol S from V , and a finite set of productions P . The set
V − T is denoted by N . Elements of N are called nonterminal symbols. Every production in P
must contain at least one nonterminal on its left side.

Derivability

Let G = (V, T, S, P) be a phrase-structure grammar. Let w0 = lzor (that is, the concatenation of
l, zo, and r) and w1 = lz1r be strings over V . If zo → z1 is a production of G, we say that w1 is
directly derivable from w0 and we write w0 ⇒ w1. If w0, w1, . . . , wn are strings over V such that
w0 ⇒ w1, w1 ⇒ w2, . . . , wn−1 ⇒ wn, then we say that wn is derivable from w0, and we write
w0

∗
=⇒ wn. The sequence of steps used to obtain wn from w0 is called a derivation.

1

ICS 241: Discrete Mathematics II (Spring 2015)

Language Generated by G, L(G)

Let G = (V, T, S, P) be a phrase-structure grammar. The language generated by G (or the lan-
guage of G), denoted by L(G), is the set of all strings of terminals that are derivable from the
starting state S. In other words,

L(G) = {w ∈ T ∗|S ∗
=⇒ w}

Types of Grammars

Type Restrictions on Productions w1 → w2

0 No restrictions
1 w1 = lAr and w2 = lwr, where A ∈ N, l, r, w ∈ (N ∪ T)∗ and w 6= λ; or w1 = S and

w2 = λ as long as S is not on the right-hand side of another production
2 w1 = A, where A is a nonterminal symbol
3 w1 = A and w2 = aB or w2 = a, where A ∈ N,B ∈ N, and a ∈ T ; or w1 = S and

w2 = λ

Derivation Trees

A derivation in the language generated by a context-free grammar can be represented graphically
using an ordered rooted tree, called a derivation, or parse tree. The root of this tree represents the
starting symbol. The internal vertices of the tree represent the nonterminal symbols that arise in
the derivation. The leaves of the tree represent the terminal symbols that arise. If the production
A → w arises in the derivation, where w is a word, the vertex that represents A has as children
vertices that represent each symbol in w, in order from left to right.

Backus-Naur Form

The Backus-Naur form (BNF) is used to specify the syntactic rules of many computer languages,
including Java. The productions in a type 2 grammar have a single nonterminal symbol as their
left-hand side. Instead of listing all the productions separately, we can combine all those with the
same nonterminal symbol on the left-hand side into one statement. Instead of using the symbol→
in a production, we use the symbol ::=. We enclose all nonterminal symbols in brackets, 〈〉, and
we list all the right-hand sides of productions in the same statement, separating them by bars.

An example of BNF
〈identifier〉 ::= 〈lcletter〉|〈identifier〉〈lcletter〉
〈lcletter〉 ::= a|b|c| · · · |z

13.1 pg. 856 # 5

Let G = (V, T, S, P) be the phrase-structure grammar with V = {0, 1, A,B, S}, T = {0, 1}, and
set of productions P consisting of S → 0A, S → 1A,A→ 0B,B → 1A,B → 1.

a) Show that 10101 belongs to the language generated by G.

S ⇒ 1A⇒ 10B ⇒ 101A⇒ 1010B ⇒ 10101

2

ICS 241: Discrete Mathematics II (Spring 2015)

b) Show that 10110 does not belong to the language generated by G.

Notice the two adjacent 1s in the string. By looking at our set of productions, P does not
contain any rules that allow two 1s to be adjacent to each other.

c) What is the language generated by G?

By looking at our set of production rules, we can easily see that our string must first start
with either 0 or 1 because of S → 0A and S → 1A. The question now becomes what comes
after the first symbol. We first consider the rules A → 0B, and B → 1A. By looking at
these rules, we know that the symbols that follow the first symbol will alternate between
0 and 1. So we get 101A or 001A. We also know that our string can only terminate by
using the rule B → 1. In addition, we know that each 1 is preceded by a 0. So this means
we will have one or more 01’s following the first symbol. The language generated by G is
{0(01)n|n ≥ 1} ∪ {1(01)n|n ≥ 1}.

13.1 pg. 856 # 13

Find a phrase-structure grammar for each of these languages.

a) the set consisting of the bit strings 0, 1, and 11

Let G = (V, T, S, P) be the phrase-structure grammar with V = {0, 1, S}, T = {0, 1}, and
set of productions P consisting of S → 0, S → 1, S → 11.

b) the set of bit strings containing only 1s

Let G = (V, T, S, P) be the phrase-structure grammar with V = {1, S, A}, T = {1}, and
set of productions P consisting of S → 1A,A→ 1A,A→ λ.

c) the set of bit strings that start with 0 and end with 1

Let G = (V, T, S, P) be the phrase-structure grammar with V = {0, 1, S, A}, T = {0, 1},
and set of productions P consisting of S → 0A1, A→ 0A,A→ 1A,A→ λ.

d) the set of bit strings that consist of a 0 followed by an even number of 1s.

Let G = (V, T, S, P) be the phrase-structure grammar with V = {0, 1, S, A}, T = {0, 1},
and set of productions P consisting of S → 0A,A→ 11A,A→ λ.

13.1 pg. 856 # 17

Construct phrase-structure grammars to generate each of these sets.

a) {0n|n ≥ 0}
Let G = (V, T, S, P) be the phrase-structure grammar with V = {0, S}, T = {0}, and set
of productions P consisting of S → 0S, S → λ.

b) {1n0|n ≥ 0}
Let G = (V, T, S, P) be the phrase-structure grammar with V = {0, 1, S, A}, T = {0, 1},
and set of productions P consisting of S → A0, A→ A1, A→ λ.

3

ICS 241: Discrete Mathematics II (Spring 2015)

c) {(000)n|n ≥ 0}
Let G = (V, T, S, P) be the phrase-structure grammar with V = {0, S}, T = {0}, and set
of productions P consisting of S → 000S, S → λ.

13.1 pg. 857 # 27

Construct a derivation tree for −109 using the given grammar.
〈signed integer〉 ::= 〈sign〉〈integer〉
〈sign〉 ::= +|−
〈integer〉 ::= 〈digit〉|〈digit〉〈integer〉
〈digit〉 ::= 0|1|2|3|4|5|6|7|8|9

〈signed integer〉

〈integer〉

〈integer〉

〈integer〉

〈digit〉

9

〈digit〉

0

〈digit〉

1

〈sign〉

−

13.1 pg. 857 # 31

Give production rules in Backus-Naur form for an identifier if it can consist of

a) one or more lowercase letters.

〈identifier〉 ::= 〈lcletter〉|〈identifier〉〈lcletter〉
〈lcletter〉 ::= a|b|c| · · · |z

b) at least three but no more than six lowercase letters.

〈identifier〉 ::= 〈lcletter〉〈lcletter〉〈lcletter〉|
〈lcletter〉〈lcletter〉〈lcletter〉〈lcletter〉|
〈lcletter〉〈lcletter〉〈lcletter〉〈lcletter〉〈lcletter〉|
〈lcletter〉〈lcletter〉〈lcletter〉〈lcletter〉〈lcletter〉〈lcletter〉

〈lcletter〉 ::= a|b|c| · · · |z

4

ICS 241: Discrete Mathematics II (Spring 2015)

c) one to six uppercase or lowercase letters beginning with an uppercase letter.

〈identifier〉 ::= 〈ucletter〉|
〈ucletter〉〈letter〉|
〈ucletter〉〈letter〉〈letter〉|
〈ucletter〉〈letter〉〈letter〉〈letter〉|
〈ucletter〉〈letter〉〈letter〉〈letter〉〈letter〉|
〈ucletter〉〈letter〉〈letter〉〈letter〉〈letter〉〈letter〉

〈letter〉 ::= 〈ucletter〉|〈lcletter〉
〈ucletter〉 ::= A|B|C| · · · |Z
〈lcletter〉 ::= a|b|c| · · · |z

d) a lowercase letter, followed by a digit or an underscore, followed by three or four alphanu-
meric characters (lower or uppercase letters and digits).

〈identifier〉 ::= 〈lcletter〉〈digitorus〉〈alphanumeric〉〈alphanumeric〉〈alphanumeric〉|
〈lcletter〉〈digitorus〉〈alphanumeric〉〈alphanumeric〉〈alphanumeric〉〈alphanumeric〉

〈digitorus〉 ::= 〈digit〉|
〈alphanumeric〉 ::= 〈letter〉|〈digit〉
〈letter〉 ::= 〈ucletter〉|〈lcletter〉
〈ucletter〉 ::= A|B|C| · · · |Z
〈lcletter〉 ::= a|b|c| · · · |z
〈digit〉 ::= 0|1|2| · · · |9

5

