### 13.5 Turing Machines

## 13.5 pg. 897 \# 1

Let $T$ be the Turing machine defined by the five-tuples: $\left(s_{0}, 0, s_{1}, 1, R\right),\left(s_{0}, 1, s_{1}, 0, R\right),\left(s_{0}, B, s_{1}, 0, R\right)$, $\left(s_{1}, 0, s_{2}, 1, L\right),\left(s_{1}, 1, s_{1}, 0, R\right)$, and $\left(s_{1}, B, s_{2}, 0, L\right)$. For each of these initial tapes, determine the final tape when $T$ halts, assuming that $T$ begins in initial position.
a )

|  | $B$ | $B$ | 0 | 0 | 1 | 1 | $B$ | $B$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

b )

|  | $B$ | $B$ | 1 | 0 | 1 | $B$ | $B$ | $B$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

d )

|  | $B$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## 13.5 pg. 898 \# 3

What does the Turing machine described by the five-tuples $\left(s_{0}, 0, s_{0}, 0, R\right),\left(s_{0}, 1, s_{1}, 0, R\right),\left(s_{0}, B, s_{2}, B, R\right)$, $\left(s_{1}, 0, s_{1}, 0, R\right),\left(s_{1}, 1, s_{0}, 1, R\right)$, and $\left(s_{1}, B, s_{2}, B, R\right)$ do when given
a) 11 as input?
b) an arbitrary bit string as input?

## 13.5 pg. 898 \# 7

Construct a Turing machine with tape symbols 0,1 , and $B$ that, when given a bit string as input, replaces the first 0 with a 1 and does not change any of the other symbols on the tape.

## 13.5 pg. 898 \# 9

Construct a Turing machine with tape symbols 0,1 , and $B$ that, when given a bit string as input, replaces all but the leftmost 1 on the tape with 0 s and does not change any of the other symbols on the tape.

## 13.5 pg. 898 \# 11

Construct a Turing machine that recognizes the set of all bit strings that end with a 0 .

## 13.5 pg. 898 \# 13

Construct a Turing machine that recognizes the set of all bit strings that contain an even number of 1s.

## 13.5 pg. 898 \# 19

Construct a Turing machine that computes the function $f(n)=n-3$ if $n \geq 3$ and $f(n)=0$ for $n=0,1,2$ for all nonnegative integers $n$.

