13.5 Turing Machines

A Turing machine consists of a finite state control unit and a tape divided into cells that expands infinitely in both directions. The control unit

- is in one state of finitely many different states at any one step
- has read and write capabilities on the tape as the control unit moves left and right on the tape

A Turing machine is the most general model of computation. They can model all computations that are performed on a computer.

Formal Definition of Turing Machine

A Turing machine $T=\left(S, I, f, s_{0}\right)$ consists of

- a finite set S of states
- an alphabet I containing the blank symbol B
- a partial function $f(f: S \times I \rightarrow S \times I \times\{R, L\})$
- The five-tuple (state, symbol, state, symbol, direction) corresponding to the partial function are called transition rules
- a starting state s_{0}

Transition in Turing Machines

If the control unit is in state s and if the partial function f is defined for the pair (s, x) with $f(s, x)=\left(s^{\prime}, x^{\prime}, d\right)$ (corresponding to the five-tuple $\left(s, x, s^{\prime}, x^{\prime}, d\right)$), the control unit will

1. Enter the state s^{\prime}
2. Write the symbol x^{\prime} in the current cell, thus erasing x
3. Move right one cell if $d=R$, or left one cell if $d=L$

If the partial function f is undefined for the pair (s, x), then the Turing machine T will halt.
At the initial state s_{0}, the control head is positioned either

- over the leftmost nonblank symbol on the tape
- over any cell if the tape is all blank

Recognizing Sets

A final state of a Turing machine T is a state that is not the first state in any five-tuple in the description of T using five-tuples.

Definition: Let V be a subset of an alphabet I. A Turing machine $T=\left(S, I, f, s_{0}\right)$ recognizes a string x in V^{*} if and only if T, starting in the initial position when x is written on the tape, halts in a final state. T is said to recognize a subset A of V^{*} if x is recognized by T if and only if $x \in A$.

Computing Functions

Turing machine as a computer of number-theoretic functions $\left(f:\left(n_{1}, n_{2}, \ldots, n_{k}\right) \rightarrow n_{R}\right)$ where n_{1}, \ldots, n_{k} and n_{R} are nonnegative integers.
To represent integers on a tape, we use unary representations of integers.

- Nonnegative integer n is represented by a string of $n+11 \mathrm{~s}$. For example, 4 is represented by 11111 .
- k-tuple $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is represented by a string of $n_{1}+11$ s followed by an asterisk, followed by a string of $n_{2}+1$ 1s followed by an asterisk, and so on, ending with a string of $n_{k}+11 \mathrm{~s}$. For example, $(3,0,1,4)$ is represented by $1111 * 1 * 11^{*} 11111$.

The Church-Turing Thesis

Given any problem that can be solved with an effective algorithm, there is a Turing machine that can solve this problem.

13.5 pg .897 \# 1

Let T be the Turing machine defined by the five-tuples: $\left(s_{0}, 0, s_{1}, 1, R\right),\left(s_{0}, 1, s_{1}, 0, R\right),\left(s_{0}, B, s_{1}, 0, R\right)$, $\left(s_{1}, 0, s_{2}, 1, L\right),\left(s_{1}, 1, s_{1}, 0, R\right)$, and $\left(s_{1}, B, s_{2}, 0, L\right)$. For each of these initial tapes, determine the final tape when T halts, assuming that T begins in initial position.
a)

	B	B	0	0	1	1	B	B	

b)

d)

13.5 pg. 898 \# 3

What does the Turing machine described by the five-tuples $\left(s_{0}, 0, s_{0}, 0, R\right),\left(s_{0}, 1, s_{1}, 0, R\right),\left(s_{0}, B, s_{2}, B, R\right)$, $\left(s_{1}, 0, s_{1}, 0, R\right),\left(s_{1}, 1, s_{0}, 1, R\right)$, and $\left(s_{1}, B, s_{2}, B, R\right)$ do when given
a) 11 as input?

b) an arbitrary bit string as input?

We first note that the tuple $\left(s_{0}, 0, s_{0}, 0, R\right)$ simply tells the machine to skip all beginning 0 s when reading from the beginning. Only when the machine encounters a 1 is when the machine enters s_{1} and writes a 0 to the current cell. Afterwards, we know from $\left(s_{1}, 0, s_{1}, 0, R\right)$ that in s_{1}, the machine will skip all 0 s. Only when the machine encounters a 1 is when the machine enters s_{0}. Since the machine enters s_{0} again, the process described before repeats. The machine will only halt when the the machine encounters a B. Meaning that this machine will read in a string and flip every other 1 , starting with the first 1 , in the bit string.

13.5 pg. 898 \# 7

Construct a Turing machine with tape symbols 0,1 , and B that, when given a bit string as input, replaces the first 0 with a 1 and does not change any of the other symbols on the tape.
$\left(s_{0}, 1, s_{0}, 1, R\right)$ and $\left(s_{0}, 0, s_{1}, 1, R\right)$ will create the desired result. The first tuple allows the machine to keep scanning right until it encounters 0 . If the machine encounters a 0 , we enter s_{1} and write a 1 in the cell. We do not need to define any functions for s_{1} because we do not need to check the rest of the tape.

13.5 pg. 898 \# 9

Construct a Turing machine with tape symbols 0,1 , and B that, when given a bit string as input, replaces all but the leftmost 1 on the tape with 0 s and does not change any of the other symbols on the tape.
$\left(s_{0}, 0, s_{0}, 0, R\right),\left(s_{0}, 1, s_{1}, 1, R\right),\left(s_{1}, 0, s_{1}, 0, R\right),\left(s_{1}, 1, s_{1}, 0, R\right) . s_{0}$ will represent our initial state where we are searching for the left most one as we start from the beginning of the symbols. Once
we found a our leftmost 1 , we can enter s_{1} to change all the remaining 1 s to 0 s . This machine will halt when we encounter a B symbol.

13.5 pg. 898 \# 11

Construct a Turing machine that recognizes the set of all bit strings that end with a 0 .
$\left(s_{0}, 0, s_{1}, 0, R\right),\left(s_{0}, 1, s_{0}, 1, R\right),\left(s_{1}, 0, s_{1}, 0, R\right),\left(s_{1}, 1, s_{0}, 1, R\right)$, and $\left(s_{1}, B, s_{2}, B, R\right) . s_{0}$ represents that the last bit read was a 1. s_{1} represents the last bit read was a 0 . We can only accept when we encounter a B symbol while in s_{1}, so it can enter the final state, s_{2}.

13.5 pg. 898 \# 13

Construct a Turing machine that recognizes the set of all bit strings that contain an even number of 1s.
$\left(s_{0}, 0, s_{0}, 0, R\right),\left(s_{0}, 1, s_{1}, 1, R\right),\left(s_{1}, 0, s_{1}, 0, R\right),\left(s_{1}, 1, s_{0}, 1, R\right)$, and $\left(s_{0}, B, s_{2}, B, R\right) . s_{0}$ represents the state where we have an even number of 1 s . s_{1} represents the state where we have an odd number of 1 s . This machine will only accept when it encounters a B symbol while in s_{0}, so it can enter the final state, s_{2}.

13.5 pg. 898 \# 19

Construct a Turing machine that computes the function $f(n)=n-3$ if $n \geq 3$ and $f(n)=0$ for $n=0,1,2$ for all nonnegative integers n.
$\left(s_{0}, 1, s_{1}, B, R\right),\left(s_{1}, 1, s_{2}, B, R\right),\left(s_{2}, 1, s_{3}, B, R\right),\left(s_{3}, 1, s_{4}, 1, R\right),\left(s_{1}, B, s_{4}, 1, R\right),\left(s_{2}, B, s_{4}, 1, R\right)$, and $\left(s_{3}, B, s_{4}, 1, R\right)$. The first 4 tuples apply for $n \geq 3$. These tuples will decrement the integer by 3 and then enter a final state s_{4}. The last 3 tuples are used when $n<3$. We write a 1 when we encounter B because the other tuples have already erased the value in the previous cells and we want $f(n)=0$. For example, if our input string is 11 B , then the Turing machine will write $B B 1$ to the tape, which evaluates to 0 .

