8.3 Divide-and-Conquer Algorithms and Recurrence Relations

8.3 pg. 535 \# 9

Suppose that $f(n)=f(n / 5)+3 n^{2}$ when n is a positive integer divisible by 5 , and $f(1)=4$. Find
a $f(5)$.
b $f(125)$.
c $f(3125)$.

8.3 pg. 535 \# 11

Give a big-O estimate for the function $f(n)=f(n / 2)+1$ if f is an increasing function and $n=2^{k}$.

8.3 pg. 535 \# 13

Give a big-O estimate for the function $f(n)=2 f(n / 3)+4$ if f is an increasing function and $n=3^{k}$.

8.3 pg. 535 \# 17

Suppose that the votes of n people for different candidates (where there can be more than two candidates) for a particular office are the elements of a sequence. A person wins the election if this person receives a majority of the votes.
a Devise a divide-and-conquer algorithm that determines whether a candidate received a majority and, if so, determine who this candidate is. [Hint: Assume that n is even and split the sequence of votes into two sequences, each with $n / 2$ elements. Note that a candidate could not received a majority of votes without receiving a majority of votes in at least one of the two halves.]
b Use the master theorem to give a big-O estimate for the number of comparisons needed by the algorithm you devised in part (a).

