8.3 Divide-and-Conquer Algorithms and Recurrence Relations

8.3 pg. 535 # 9
Suppose that \(f(n) = f(n/5) + 3n^2 \) when \(n \) is a positive integer divisible by 5, and \(f(1) = 4 \). Find

a \(f(5) \).
b \(f(125) \).
c \(f(3125) \).

8.3 pg. 535 # 11
Give a big-O estimate for the function \(f(n) = f(n/2) + 1 \) if \(f \) is an increasing function and \(n = 2^k \).

8.3 pg. 535 # 13
Give a big-O estimate for the function \(f(n) = 2f(n/3) + 4 \) if \(f \) is an increasing function and \(n = 3^k \).

8.3 pg. 535 # 17
Suppose that the votes of \(n \) people for different candidates (where there can be more than two candidates) for a particular office are the elements of a sequence. A person wins the election if this person receives a majority of the votes.

a Devise a divide-and-conquer algorithm that determines whether a candidate received a majority and, if so, determine who this candidate is. [Hint: Assume that \(n \) is even and split the sequence of votes into two sequences, each with \(n/2 \) elements. Note that a candidate could not received a majority of votes without receiving a majority of votes in at least one of the two halves.]

b Use the master theorem to give a big-O estimate for the number of comparisons needed by the algorithm you devised in part (a).