
ICS 241: Discrete Mathematics II (Spring 2015)

8.3 Divide-and-Conquer Algorithms and Recurrence Relations

Divide and Conquer Algorithm: A divide and conquer algorithm works by recursively breaking
down a problem into two or more sub-problems of the same (or related) type, until these become
simple enough to be solved directly. The solutions to the sub-problems are then combined to give
a solution to the original problem. - Wikipedia

Theorem 1: Let f be an increasing function that satisfies the recurrence relation

f(n) = af(n/b) + c

whenever n is divisible by b, where a ≥ 1, b is an integer greater than 1, and c is a positive real
number. Then

f(n) =

{
O(nlogb a) if a > 1

O(log n) if a = 1

Furthermore, when n = bk and a 6= 1, where k is a positive integer,

f(n) = C1n
logb a + C2

where C1 = f(1) + c/(a− 1) and C2 = −c/(a− 1).

Master Theorem: Let f be an increasing function that satisfies the recurrence relation

f(n) = af(n/b) + cnd

whenever n = bk, where k is a positive integer, a ≥ 1, b is an integer greater than 1, and c and d
are real numbers with c positive and d nonnegative. Then

f(n) =


O(nd) if a < bd

O(nd log n) if a = bd

O(nlogb a) if a > bd

8.3 pg. 535 # 9

Suppose that f(n) = f(n/5)+ 3n2 when n is a positive integer divisible by 5, and f(1) = 4. Find

a f(5).

Just have to work up to the desired number.

f(5) = f(5/5) + 3(5)2

= f(1) + 3(25)
= 4 + 75
= 79

b f(125).

f(25) = f(25/5) + 3(25)2

= f(5) + 3(625)

1



ICS 241: Discrete Mathematics II (Spring 2015)

= 79 + 1875
= 1954

f(125) = f(125/5) + 3(125)2

= f(25) + 3(15625)
= 1954 + 46875
= 48829

c f(3125).

f(625) = f(625/5) + 3(625)2

= f(125) + 3(390625)
= 48829 + 1171875
= 1220704

f(3125) = f(3125/5) + 3(3125)2

= f(625) + 3(9765625)
= 1220704 + 29296875
= 30517579

8.3 pg. 535 # 11

Give a big-O estimate for the function f(n) = f(n/2)+1 if f is an increasing function and n = 2k.

Use Master Theorem with a = 1, b = 2, c = 1, d = 0. Since a = bd, we know that f(n) is
O(nd log n) = O(log n).

8.3 pg. 535 # 13

Give a big-O estimate for the function f(n) = 2f(n/3) + 4 if f is an increasing function and
n = 3k.

Use Master Theorem with a = 2, b = 3, c = 4, d = 0. Since a > bd, we know that f(n) is
O(nlogb a) = O(nlog3 2).

8.3 pg. 535 # 17

Suppose that the votes of n people for different candidates (where there can be more than two
candidates) for a particular office are the elements of a sequence. A person wins the election if this
person receives a majority of the votes.

a Devise a divide-and-conquer algorithm that determines whether a candidate received a ma-
jority and, if so, determine who this candidate is. [Hint: Assume that n is even and split the
sequence of votes into two sequences, each with n/2 elements. Note that a candidate could
not received a majority of votes without receiving a majority of votes in at least one of the
two halves.]

We will use the hint to devise our algorithm. We first note that our base case is that a sequence
with one element means that the one person on the list is the winner. For our recursive step,

2



ICS 241: Discrete Mathematics II (Spring 2015)

we will divide the list into two equal parts and count which name occurs the most in the two
parts. We know that the winner requires a majority of votes and that would mean that the
winner will need at least half+1 of a part to be his/her name. Keep applying this recursive
step to each half and we will eventually have only at most two names in the list. Count the
number of occurrences in the whole list of the two remaining names and this will decide the
winner. This will only require at most 2n additional comparisons for a list of length n.

b Use the master theorem to give a big-O estimate for the number of comparisons needed by
the algorithm you devised in part (a).

Our function is f(n) = 2f(n/2) + 2n. So a = 2, b = 2, c = 2, d = 1. By the Master
theorem, a = bd so, the big-O is O(nd log n) = O(n log n).

3


