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8.6 Applications of Inclusion-Exclusion

Alternative form of inclusion-exclusion

The alternative form of inclusion-exclusion is used to find the number of elements in a set that
have none of n properties P1, P2, ..., Pn. Let N(P ′1P

′
2...P

′
n) denote the number of elements that

have none of the properties P1, P2, ..., Pn. Then we’ll have:

N(P ′1P
′
2...P

′
n) = N − |A1 ∪ A2 ∪ ... ∪ An|

By the inclusion-exclusion principle, we can see that

N(P ′1P
′
2...P

′
n) = N−

∑
1≤i≤n

|Ai|+
∑

1≤i<j≤n

|Ai ∩ Aj|−
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak|+...+(−1)n|A1∩A2∩...∩An|

Number of Onto Functions

Reviewing onto function: A function f from A to B is called onto, or a surjection, if and only if
for every element b ∈ B there is an element a ∈ A with f(a) = b. (Section 2.3 pg. 143)

Theorem 1: Let m and n be positive integers with m ≥ n. Then, there are

nm − C(n, 1)(n− 1)m + C(n, 2)(n− 2)m − ...+ (−1)n−1C(n, n− 1) · 1m

onto functions from a set with m elements to a set with n elements.

8.6 pg. 564 # 1

Suppose that in a bushel of 100 apples there are 20 that have worms in them and 15 that have
bruises. Only those apples with neither worms nor bruises can be sold. If there are 10 bruised
apples that have worms in them, how many of the 100 apples can be sold?

We are looking for the number of apples that have neither of the properties of having worms or
having bruises. We can simply apply the the alternative form of inclusion-exclusion here.

Let P1 denote the property of having worms in them and P2 denote the property of having bruises.
We know that N(P1) = 20, N(P2) = 15, and N(P1P2) = 10. By using the alternative form of
inclusion-exclusion, our equation is N(P ′1P

′
2) = N −N(P1)−N(P2) +N(P1P2) = 100− 20−

15 + 10 = 75. We can sell 75 apples.

8.6 pg. 564 # 3

How many solutions does the equation x1 + x2 + x3 = 13 have where x1, x2, and x3 are nonnega-
tive integers less than 6?

Let P1, P2, P3 be the property of the solution when
P1 = x1 ≥ 6
P2 = x2 ≥ 6
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P3 = x3 ≥ 6

Then the number of total solutions N = C(3 + 13− 1, 13) = C(15, 13) = 105
We need to find the remaining number of solutions:
N(P1) = C(3 + (13− 6)− 1, (13− 6)) = C(9, 7) = 36
N(P2) = C(3 + (13− 6)− 1, (13− 6)) = C(9, 7) = 36
N(P3) = C(3 + (13− 6)− 1, (13− 6)) = C(9, 7) = 36
N(P1P2) = C(3 + (13− 6− 6)− 1, (13− 6− 6)) = C(3, 1) = 3
N(P2P3) = C(3 + (13− 6− 6)− 1, (13− 6− 6)) = C(3, 1) = 3
N(P1P3) = C(3 + (13− 6− 6)− 1, (13− 6− 6)) = C(3, 1) = 3
N(P1P2P3) = 0

We need to find N(P ′1P
′
2P
′
3).

N(P ′1P
′
2P
′
3) = N −N(P1)−N(P2)−N(P3) +N(P1P2) +N(P2P3) +N(P1P3)−N(P1P2P3)

= 105− 36− 36− 36 + 3 + 3 + 3− 0
= 6

There are 6 solutions to the problem.

8.6 pg. 564 # 9

How many ways are there to distribute six different toys to three different children such that each
child gets at least one toy?

This problem is an onto function where the set of toys is assigned to the set of children, so we can
apply Theorem 1 where m = 6 and n = 3.
36 − C(3, 1)26 + C(3, 2)16

= 729− 3(64) + 3(1)
= 729− 192 + 3
= 540

There are 540 ways to distribute six toys to the three children if each child gets at least one toy.
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