8.2 Solving Linear Recurrence Relations

8.2 pg. 524 \# 1

Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are.
a $a_{n}=3 a_{n-1}+4 a_{n-2}+5 a_{n-3}$
b $a_{n}=2 n a_{n-1}+a_{n-2}$
c $a_{n}=a_{n-1}+a_{n-4}$
d $a_{n}=a_{n-1}+2$
e $a_{n}=a_{n-1}^{2}+a_{n-2}$
f $a_{n}=a_{n-2}$
g $a_{n}=a_{n-1}+n$

8.2 pg. 524 \# 3

Solve these recurrence relations together with the initial conditions given.
a $a_{n}=2 a_{n-1}$ for $n \geq 1, a_{0}=3$
b $a_{n}=a_{n-1}$ for $n \geq 1, a_{0}=2$
c $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 2, a_{0}=1, a_{1}=0$
d $a_{n}=4 a_{n-1}-4 a_{n-2}$ for $n \geq 2, a_{0}=6, a_{1}=8$
e $a_{n}=-4 a_{n-1}-4 a_{n-2}$ for $n \geq 2, a_{0}=0, a_{1}=1$
f $a_{n}=4 a_{n-2}$ for $n \geq 2, a_{0}=0, a_{1}=4$

8.2 pg. 525 \# 13

Find the solution to $a_{n}=7 a_{n-2}+6 a_{n-3}$ with $a_{0}=9, a_{1}=10, a_{2}=32$.

8.2 pg. 525 \# 21

What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has roots $1,1,1,1,-2,-2,-2,3,3,-4$?

8.2 pg. 525 \# 27

What is the general form of the particular solution guaranteed to exist by Theorem 6 of the linear nonhomogeneous recurrence relation $a_{n}=8 a_{n-2}-16 a_{n-4}+F(n)$ if
a $F(n)=n^{3}$?
b $F(n)=(-2)^{n}$?
c $F(n)=n 2^{n}$?
d $F(n)=n^{2} 4^{n}$?
e $F(n)=\left(n^{2}-2\right)(-2)^{n}$?
f $F(n)=n^{4} 2^{n}$?
g $F(n)=2$?

8.2 pg. 525 \# 29

a Find all solutions of the recurrence relation $a_{n}=2 a_{n-1}+3^{n}$.
b Find the solution of the recurrence relation in part (a) with initial condition $a_{1}=5$.

8.2 pg. 525 \# 33

Find all solutions of the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}+(n+1) 2^{n}$.

