8.2 Solving Linear Recurrence Relations

8.2 pg. 524 # 1

Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are.

a
$$a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}$$

b $a_n = 2na_{n-1} + a_{n-2}$
c $a_n = a_{n-1} + a_{n-4}$
d $a_n = a_{n-1} + 2$
e $a_n = a_{n-1}^2 + a_{n-2}$
f $a_n = a_{n-2}$
g $a_n = a_{n-1} + n$

8.2 pg. 524 # 3

Solve these recurrence relations together with the initial conditions given.

a
$$a_n = 2a_{n-1}$$
 for $n \ge 1, a_0 = 3$
b $a_n = a_{n-1}$ for $n \ge 1, a_0 = 2$
c $a_n = 5a_{n-1} - 6a_{n-2}$ for $n \ge 2, a_0 = 1, a_1 = 0$
d $a_n = 4a_{n-1} - 4a_{n-2}$ for $n \ge 2, a_0 = 6, a_1 = 8$
e $a_n = -4a_{n-1} - 4a_{n-2}$ for $n \ge 2, a_0 = 0, a_1 = 1$
f $a_n = 4a_{n-2}$ for $n \ge 2, a_0 = 0, a_1 = 4$

8.2 pg. 525 # 13

Find the solution to $a_n = 7a_{n-2} + 6a_{n-3}$ with $a_0 = 9, a_1 = 10, a_2 = 32$.

8.2 pg. 525 # 21

What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has roots 1, 1, 1, 1, -2, -2, -2, 3, 3, -4?

8.2 pg. 525 # 27

What is the general form of the particular solution guaranteed to exist by Theorem 6 of the linear nonhomogeneous recurrence relation $a_n = 8a_{n-2} - 16a_{n-4} + F(n)$ if

a $F(n) = n^3$? b $F(n) = (-2)^n$? c $F(n) = n2^n$? d $F(n) = n^2 4^n$? e $F(n) = (n^2 - 2)(-2)^n$? f $F(n) = n^4 2^n$? g F(n) = 2?

8.2 pg. 525 # 29

- a Find all solutions of the recurrence relation $a_n = 2a_{n-1} + 3^n$.
- b Find the solution of the recurrence relation in part (a) with initial condition $a_1 = 5$.

8.2 pg. 525 # 33

Find all solutions of the recurrence relation $a_n = 4a_{n-1} - 4a_{n-2} + (n+1)2^n$.