### 10.4 Connectivity

## 10.4 pg. 689 \# 1

Does each of these lists of vertices form a path in the following graph? Which paths are simple? Which are circuits? What are the lengths of those that are paths?

a) $a, e, b, c, b$
b) $a, e, a, d, b, c, a$
c) $e, b, a, d, b, e$
d) $c, b, d, a, e, c$

## 10.4 pg. 689 \# 11

Determine whether each of these graphs is strongly connected and if not, whether it is weakly connected.
a)

b )

c )


## 10.4 pg. 690 \# 15

Find the strongly connected components of each of these graphs.
a )

b)


## 10.4 pg. 690 \# 21

Use paths either to show that these graphs are not isomorphic or to find an isomorphism between them.


The graph $G$ has a triangle formed by the path $\left(u_{1}, u_{2}, u_{3}, u_{1}\right)$. In $H$, there is no such triangle formed by any of the vertices, therefore these graphs are not isomorphic.

## 10.4 pg. 691 \# 27

Find the number of paths from $a$ to $e$ in the directed graph of length

a) 2 .
b) 3 .

## 10.4 pg. 691 \# 33

Find all the cut vertices of the given graph.


