10.5 Euler and Hamilton Paths

10.5 pg. 703 \# 1

Determine whether the given graph has an Euler circuit. Construct such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and construct such a path if one exists.

10.5 pg. 703 \# 3

Determine whether the given graph has an Euler circuit. Construct such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and construct such a path if one exists.

10.5 pg. 704 \# 7

Determine whether the given graph has an Euler circuit. Construct such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and construct such a path if one exists.

10.5 pg. 703 \# 19

Determine whether the given graph has an Euler circuit. Construct such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and construct such a path if one exists.

10.5 pg. 703 \# 23

Determine whether the given graph has an Euler circuit. Construct such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and construct such a path if one exists.

10.5 pg. 705 \# 31

Determine whether the given graph has an Hamilton circuit. If it does, find such a circuit. It it does not, give an argument to show why no such circuit exists.

10.5 pg. 705 \# 33

Determine whether the given graph has an Hamilton circuit. If it does, find such a circuit. It it does not, give an argument to show why no such circuit exists.

10.5 pg. 706 \# 39

Determine whether the given graph has an Hamilton path. If it does, find such a path. It it does not, give an argument to show why no such path exists.

10.5 pg. 706 \# 47

For each of these graphs, determine (i) whether Dirac's theorem can be used to show that the graph has a Hamilton circuit, $(i i)$ whether Ore's theorem can be used to show that the graph has a Hamilton circuit, and (iii) whether the graph has a Hamilton circuit.
a)

b)

ICS 241: Discrete Mathematics II (Spring 2015)
c)

