10.7 Planar Graphs

A graph is called planar if it can be drawn in the plane without any edges crossing (where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common endpoint)

Euler's Formula

Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then $r=e-v+2$.

10.7 pg. 725 \# 3

Draw the given planar graph without any crossings.

10.7 pg. 725 \# 5

Determine whether the given graph is planar. If so, draw it so that no edges cross.

This graph is not planar because we can form a $K_{3,3}$ graph with the vertices $\{a, d, f\}$ and $\{b, c, e\}$

10.7 pg. 725 \# 7

Determine whether the given graph is planar. If so, draw it so that no edges cross.

10.7 pg. 725 \# 13

Suppose that a connected planar graph has six vertices, each of degree four. Into how many regions is the plane divided by a planar representation of this graph?

We apply Euler's formula where $r=e-v+2$.
Since each vertex has degree 4, the sum of the degrees is 24 . By the handshaking theorem, $2 e=24$
so $e=12$.
$r=12-6+2$
$r=8$

Thus we have 8 regions in this planar graph.

