10.6 Shortest-Path Problems

- Given a graph G = (V, E), a weighting function w(e), w(e) > 0, for the edges of G, and a source vertex, v_0 .
- We wish to determine a shortest path from v_0 to v_n

Dijkstra's Algorithm

Dijkstra's algorithm is a common algorithm used to determine shortest path from a to z in a graph.

Algorithm *dijkstra*(*G* : weighted connected simple graph with all weights positive)

```
{G has vertices a = v_0, v_1, \ldots, v_n = z and lengths w(v_i, v_j) where w(v_i, v_j) = \infty if \{v_i, v_j\} is not
an edge in G
 1: for i = 1 to n do
       L(v_i) = \infty
 2:
 3: end for
 4: L(a) = 0
 5: S = \emptyset {the labels are now initialized so that the label of a is 0 and all other labels are \infty, and
    S is the empty set \}
 6: while z \notin S do
       u = a vertex not in S with L(u) is minimal
 7:
       S = S \cup \{u\}
 8:
 9:
       for all vertices v not in S do
          if L(u) + w(u, v) < L(v) then
10:
             L(v) = L(u) + w(u, v)
11:
12:
          end if
       end for
13:
14: end while
15: return L(z){L(z) = \text{length of shortest path from } a \text{ to } z}
```

Traveling Salesman

The traveling salesman problem asks for the circuit of minimum total weight in a weighted, complete, undirected graph that visits each vertex exactly once and returns to its starting point.

• Equivalent of asking for a Hamilton circuit with a minimum total weight in the complete graph.

•
$$\frac{(n-1)!}{2}$$
 circuits to examine

- This problem is NP-complete
- An approximation algorithm is used in practical approach

10.6 pg. 716 # 5

Find the length and shortest path between a and z in each of the weighted graphs

a)

Use Dijkstra's algorithm.

k	L(a)	L(b)	L(c)	L(d)	L(e)	L(z)	Vertex
							added
							to S
0	0	∞	∞	∞	∞	∞	a
1	0	2	3	∞	∞	∞	b
2	0	2	3	7	4	∞	С
3	0	2	3	7	4	∞	e
4	0	2	3	5	4	8	d
5	0	2	3	5	4	7	z

rtex					
hot	Prior vertex	on	shortest	nath to	

					-
k	b	С	d	e	z
1	a	a			
2			b	b	
3					
4			e		e
5					d

Our shortest path is a, b, e, d, z with length 7.

b)

k	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(z)	Vertex
									added
									to S
0	0	∞	a						
1	0	4	3	∞	∞	∞	∞	∞	С
2	0	4	3	6	9	∞	∞	∞	b
3	0	4	3	6	9	∞	∞	∞	d
4	0	4	3	6	7	11	∞	∞	e
5	0	4	3	6	7	11	12	∞	f
6	0	4	3	6	7	11	12	18	g
7	0	4	3	6	7	11	12	16	z

Prior vertex on shortest path to

k	b	c	d	e	f	g	z
1	a	a					
2			c	c			
3							
4				d	d		
5						e	
6							f
7							g

Our shortest path is a, c, d, e, g, z with length 16.