10.6 Shortest-Path Problems

- Given a graph $G=(V, E)$, a weighting function $w(e), w(e)>0$, for the edges of G, and a source vertex, v_{0}.
- We wish to determine a shortest path from v_{0} to v_{n}

Dijkstra's Algorithm

Dijkstra's algorithm is a common algorithm used to determine shortest path from a to z in a graph.

```
Algorithm \(\operatorname{dijkstra(G}\) : weighted connected simple graph with all weights positive)
\{G has vertices \(a=v_{0}, v_{1}, \ldots, v_{n}=z\) and lengths \(w\left(v_{i}, v_{j}\right)\) where \(w\left(v_{i}, v_{j}\right)=\infty\) if \(\left\{v_{i}, v_{j}\right\}\) is not
an edge in \(G\}\)
    for \(i=1\) to \(n\) do
        \(L\left(v_{i}\right)=\infty\)
    end for
    \(L(a)=0\)
    \(S=\emptyset\{\) the labels are now initialized so that the label of \(a\) is 0 and all other labels are \(\infty\), and
    \(S\) is the empty set \(\}\)
    while \(z \notin S\) do
        \(u=\) a vertex not in \(S\) with \(L(u)\) is minimal
        \(S=S \cup\{u\}\)
        for all vertices \(v\) not in \(S\) do
            if \(L(u)+w(u, v)<L(v)\) then
                \(L(v)=L(u)+w(u, v)\)
            end if
        end for
    end while
    return \(L(z)\{L(z)=\) length of shortest path from \(a\) to \(z\}\)
```


Traveling Salesman

The traveling salesman problem asks for the circuit of minimum total weight in a weighted, complete, undirected graph that visits each vertex exactly once and returns to its starting point.

- Equivalent of asking for a Hamilton circuit with a minimum total weight in the complete graph.
- $\frac{(n-1)!}{2}$ circuits to examine
- This problem is NP-complete
- An approximation algorithm is used in practical approach

10.6 pg. 716 \# 5

Find the length and shortest path between a and z in each of the weighted graphs
a)

Use Dijkstra's algorithm.

k	$L(a)$	$L(b)$	$L(c)$	$L(d)$	$L(e)$	$L(z)$	Vertex added	Prior vertex on shortest path to						
							to S	k	b	c	d	e	z	
0	0	∞	∞	∞	∞	∞	a	1	a	a				
1	0	2	3	∞	∞	∞	b	2			b	b		
2	0	2	3	7	4	∞	c	3						
3	0	2	3	7	4	∞	e	4			e		e	
4	0	2	3	5	4	8	d	5					d	
5	0	2	3	5	4	7	z							

Our shortest path is a, b, e, d, z with length 7 .
b)

k	$L(a)$	$L(b)$	$L(c)$	$L(d)$	$L(e)$	$L(f)$	$L(g)$	$L(z)$	Vertex added to S
0	0	∞	a						
1	0	4	3	∞	∞	∞	∞	∞	c
2	0	4	3	6	9	∞	∞	∞	b
3	0	4	3	6	9	∞	∞	∞	d
4	0	4	3	6	7	11	∞	∞	e
5	0	4	3	6	7	11	12	∞	f
6	0	4	3	6	7	11	12	18	g
7	0	4	3	6	7	11	12	16	z

Prior vertex on shortest path to

k	b	c	d	e	f	g	z
1	a	a					
2			c	c			
3							
4				d	d		
5						e	
6							f
7							g

Our shortest path is a, c, d, e, g, z with length 16 .

