9.6 Partial Orderings

9.6 pg. 630 \# 1

Which of these relations on $\{0,1,2,3\}$ are partial orderings? Determine the properties of a partial ordering that the others lack.
a) $\{(0,0),(1,1),(2,2),(3,3)\}$
b) $\{(0,0),(1,1),(2,0),(2,2),(2,3),(3,2),(3,3)\}$
c) $\{(0,0),(1,1),(1,2),(2,2),(3,3)\}$
d) $\{(0,0),(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
e) $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,2),(3,3)\}$

9.6 pg. 630 \# 3

Is (S, R) a poset if S is the set of all people in the world and $(a, b) \in R$, where a and b are people, if
a) a is taller than b ?
b) a is not taller than b ?
c) $a=b$ or a is an ancestor of b ?
d) a and b have a common friend?

9.6 pg. 630 \# 5

Which of these are posts?
a) $(\mathbf{Z},=)$
b) (\mathbf{Z}, \neq)
c) (\mathbf{Z}, \geq)
d) (\mathbf{Z}, \nmid)

9.6 pg. 630 \# 11

Determine whether the relation with the directed graph shown is a partial order.

9.6 pg. 630 \# 19

Find the lexicographic ordering of the bit strings $0,01,11,001,010,011,0001$, and 0101 based on the ordering $0<1$.

9.6 pg. 631 \# 23

Draw the Hasse diagram for divisibility on the set
a) $\{1,2,3,4,5,6,7,8\}$
b) $\{1,2,3,5,7,11,13\}$
c) $\{1,2,3,6,12,24,36,48\}$

9.6 pg. 631 \# 33

Answer these questions for the poset $(\{3,5,9,15,24,45\}, \mid)$.
a) Find the maximal elements.
b) Find the minimal elements.
c) Is there a greatest element?
d) Is there a least element?
e) Find all upper bounds of $\{3,5\}$.
f) Find the least upper bound of $\{3,5\}$, if it exists.
g) Find all lower bounds of $\{15,45\}$.
h) Find the greatest lower bound of $\{15,45\}$, if it exists.

9.6 pg. 632 \# 43

Determine whether the posets with these Hasse diagrams are lattices.
a)

b)

9.6 pg. 633 \# 67

Find an ordering of the tasks of a software project if the Hasse diagram for the tasks of the project is shown.

