9.1 Relations and Their Properties

Binary Relation

Definition: Let A, B be any sets. A binary relation R from A to B, written $R: A \times B$, is a subset of the set $A \times B$.

Complementary Relation

Definition: Let R be the binary relation from A to B. Then the complement of R can be defined by $\bar{R}=\{(a, b) \mid(a, b) \notin R\}=(A \times B)-R$

Inverse Relation

Definition: Let R be the binary relation from A to B. Then the inverse of R can be defined by $R^{-1}=\{(b, a) \mid(a, b) \in R\}$

Relations on a Set

Definition: A relation on a set A is a relation from A to A. In other words, a relation on a set A is a subset of $A \times A$.

Digraph

Definition: A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

Properties

Reflexive: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$. (a)

Every vertex has a self-loop.
Symmetric: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

If there is an edge from one vertex to another, there is an edge in the opposite direction.
Antisymmetric: A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric.

There is at most one edge between distinct vertices.

Some notes on Symmetric and Antisymmetric:

- A relation can be both symmetric and antisymmetric.
- A relation can be neither symmetric nor antisymmetric.

Transitive: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

If there is a path from one vertex to another, there is an edge from the vertex to another.

Combining Relations

Since relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined. Such as union, intersection, and set difference.

Composition

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Powers of a Relation

Let R be a relation on the set A. The powers $R^{n}, n=1,2,3, \ldots$, are defined recursively by $R^{1}=R$ and $R^{n+1}=R^{n} \circ R$.

9.1 pg. 581 \# 3

For each of these relations on the set $\{1,2,3,4\}$, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.
a $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
Not reflexive because we do not have $(1,1),(3,3)$, and $(4,4)$.
Not symmetric because while we we have $(3,4)$, we do not have $(4,3)$.
Not antisymmetric because we have both $(2,3)$ and $(3,2)$.
Transitive because if we have (a, b) in this relation, then a will be either 2 or 3. Then $(2, c)$
and $(3, c)$ are in the relation for all $c \neq 1$. Since whenever we have both (a, b) and (b, c), then we have (a, c) which makes this relation transitive.
b $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
Reflexive because (a, a) is in the relation for all $a=1,2,3,4$.
Symmetric because for every (a, b), we have a (b, a).
Not antisymmetric because we have $(1,2)$ and $(2,1)$.
Transitive because while we have $(1,2)$ and $(2,1)$, we also have $(1,1)$ and $(2,2)$ in the relation.
c $\{(2,4),(4,2)\}$
Not reflexive because we do not have (a, a) for all $a=1,2,3,4$.
Symmetric because for every (a, b), we have a (b, a).
Not antisymmetric because we have both $(2,4)$ and $(4,2)$.
Not transitive because we are missing $(2,2)$ and $(4,4)$.
d $\{(1,2),(2,3),(3,4)\}$
Not reflexive because we do not have (a, a) for all $a=1,2,3,4$.
Not symmetric because we do not have $(2,1),(3,2)$, and $(4,3)$.
Antisymmetric because for every (a, b), we do not have a (b, a).
Not transitive because we do not have $(1,3)$ for $(1,2)$ and $(2,3)$.
e $\{(1,1),(2,2),(3,3),(4,4)\}$
Reflexive because we have (a, a) for every $a=1,2,3,4$.
Symmetric because we do not have a case where (a, b) and $a \neq b$.
Antisymmetric because we do not have a case where (a, b) and $a \neq b$.
Transitive because we can satisfy (a, b) and (b, c) when $a=b=c$.
f $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$
Not reflexive because we do not have (a, a) for all $a=1,2,3,4$.
Not symmetric because the relation does not contain $(4,1),(3,2),(4,2)$, and $(4,3)$.
Not antisymmetric because we have $(1,3)$ and $(3,1)$.
Not transitive because we do not have $(2,1)$ for $(2,3)$ and $(3,1)$.

9.1 pg. 581 \# 7

Determine whether the relation R on the set of all integers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in R$ if and only if
a $x \neq y$.
Not reflexive because it's not the case $1 \neq 1$.
Is symmetric because $x \neq y$ and $y \neq x$.
Not antisymmetric because we have $x \neq y$ and $y \neq x$.
Not transitive because we can have $1 \neq 2$ and $2 \neq 1$ but not $1 \neq 1$.
b $x y \geq 1$.
Not reflexive because we can't have $(0,0)$.
Is symmetric because we have $x y=y x$.
Not antisymmetric because we have $x y=y x$.
Is transitive because if we have $(a, b) \in R$ and that $(b, c) \in R$, it follows that $(a, c) \in R$. Note that in order for the relation to be true, a, b, and c will have to be all positive or all negative.
c $x=y+1$ or $x=y-1$.
Not reflexive because we can't have $(1,1)$
Is symmetric because we have $x=y+1$ and $y=x-1$. They are equivalent equations.
Not antisymmetric because of the same reason above.
Not transitive because if we have $(1,2)$ and $(2,1)$ in the relation, $(1,1)$ is not in relation.
g $x=y^{2}$.
Not reflexive because $(2,2)$ does not satisfy.
Not symmetric because although we can have $(9,3)$, we can't have $(3,9)$.
Is antisymmetric because each integer will map to another integer but not in reverse (besides 0 and 1).
Not transitive because if we have $(16,4)$ and $(4,2)$, it's not the case that $16=2^{2}$.
h $x \geq y^{2}$.
Not reflexive because we can't have $(2,2)$.
Not symmetric because if we have $(9,3)$, we can't have $(3,9)$.
Is antisymmetric, because each integer will map to another integer but not in reverse (besides 0 and 1).
Is transitive because if $x \geq y^{2}$ and $y \geq z^{2}$, then $x \geq z^{2}$.

9.1 pg. 582 \# 27

Let R be the relation $R=\{(a, b)|a| b\}$ on the set of positive integers. Find
a R^{-1}
$R^{-1}=\{(b, a)|a| b\}=\{(a, b)|b| a\}$
b \bar{R}
$\bar{R}=\{(a, b)|a \nmid| b\}$.

