$9.2 n$-ary Relations and Their Applications

n-ary Relations
Definition: Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times$ $\ldots \times A_{n}$. The sets $A_{1}, A_{2}, \ldots, A_{n}$ are called the domains of the relation, and n is called its degree.

Primary Key

Definition: A domain of an n-ary relation is called a primary key when the value of the n-tuple from this domain determines the n-tuple.

Composite Key

Definition: Combinations of domains can also uniquely identify n-tuples in an n-ary relation. When the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these domains is called a composite key.

Selection

Definition: Let R be an n-ary relation and C a condition that elements in R may satisfy. Then the selection operator S_{C} maps the n-ary relation R to the n-ary relation of all n-tuples from R that satisfy the condition C.

Projection

Definition: The projection $P_{i_{1} i_{2}, \ldots, i_{m}}$ where $i_{1}<i_{2}<\ldots<i_{m}$, maps the n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ to the m-tuple ($a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}}$), where $m \leq n$.

Join

Definition: Let R be a relation of degree m and S a relation of degree n. The join $J_{p}(R, S)$, where $p \leq m$ and $p \leq n$, is a relation of degree $m+n-p$ that consists of all $(m+n-p)$-tuples $\left(a_{1}, a_{2}, \ldots, a_{m-p}, c_{1}, c_{2}, \ldots, c_{p}, b_{1}, b_{2}, \ldots, b_{n-p}\right)$, where the m-tuple $\left(a_{1}, a_{2}, \ldots, a_{m-p}, c_{1}, c_{2}, \ldots, c_{p}\right)$ belongs to R and the n-tuple $\left(c_{1}, c_{2}, \ldots, c_{p}, b_{1}, b_{2}, \ldots, b_{n-p}\right)$ belongs to S.

9.2 pg. 589 \# 7

The 3-tuples in a 3-ary relation represent the following attributes of a student database: student ID number, name, phone number.
a Is student ID number likely to be a primary key?
Yes because a student ID number is unique in a system.
b Is name likely to be a primary key?
No because multiple students can have the same name.
c Is phone number likely to be a primary key?
No because we can have students that have the same phone number, such as two siblings having the same home phone number.

9.2 pg. 589 \# 9

The 5-tuples in a 5-ary relation represent these attributes of all people in the United States: name, Social Security number, street address, city, and state.
a Determine a primary key for this relation.
Social security number because it is unique.
b Under what conditions would (name, street address) be a composite key?
When we do not have people that has the same street address and have the same names.
c Under what conditions would (name, street address, city) be a composite key?
Same as above because many people can live in the same city.

9.2 pg. 590 \# 11

What do you obtain when you apply the selection operator S_{C}, where C is the condition Destination $=$ Detroit, to the database in Table 8 ?

Table 8 Flights

Airline	Flight_number	Gate	Destination	Departure_time
Nadir	122	34	Detroit	$08: 10$
Acme	221	22	Denver	$08: 17$
Acme	122	33	Anchorage	$08: 22$
Acme	323	34	Honolulu	$08: 30$
Nadir	199	13	Detroit	$08: 47$
Acme	222	22	Denver	$09: 10$
Nadir	322	34	Detroit	$09: 44$

$\{($ Nadir, 122, 34, Detroit, 08:10), (Nadir, 199, 13, Detroit, 08:47), (Nadir, 322, 34, Detroit, 09:44) \}

9.2 pg. 590 \# 13

What do you obtain when you apply the selection operator S_{C}, where C is the condition (Airline $=$ Nadir $) \vee$ (Destination $=$ Denver $)$, to the database in Table 8?
\{(Nadir, 122, 34, Detroit, 08:10), (Acme, 221, 22, Denver, 08:17), (Nadir, 199, 13, Detroit, 08:47), (Acme, 222, 22, Denver, 09:10), (Nadir, 322, 34, Detroit, 09:44)\}

9.2 pg. 590 \# 17

Display the table produced by applying the projection $P_{1,4}$ to Table 8 .

Airline	Destination
Nadir	Detroit
Acme	Denver
Acme	Anchorage
Acme	Honolulu

9.2 pg. 590 \# 19

Construct the table obtained by applying the join operator J_{2} to the relations in Tables 9 and 10 .

Table 9 Part_needs

Supplier	Part_number	Project
23	1092	1
23	1101	3
23	9048	4
31	4975	3
31	3477	2
32	6984	4
32	9191	2
33	1001	1

Table 10 Part_inventory

Part_number	Project	Quantity	Color_code
1001	1	14	8
1092	1	2	2
1101	3	1	1
3477	2	25	2
4975	3	6	2
6984	4	10	1
9048	4	12	2
9191	2	80	4

Supplier	Part_number	Project	Quantity	Color_code
23	1092	1	2	2
23	1101	3	1	1
23	9048	4	12	2
31	4975	3	6	2
31	3477	2	25	2
32	6984	4	10	1
32	9191	2	80	4
33	1001	1	14	8

