9.4 Closure of Relations

Reflexive Closure

The reflexive closure of a relation R on A is obtained by adding (a, a) to R for each $a \in A$.

Symmetric Closure

The symmetric closure of R is obtained by adding (b, a) to R for each $(a, b) \in R$.

Transitive Closure

The transitive closure of R is obtained by repeatedly adding (a, c) to R for each $(a, b) \in R$ and $(b, c) \in R$.

Paths and Circuits in Directed Graphs

A path from a to b in the directed graph G is a sequence of edges $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$, $\ldots,\left(x_{n-1}, x_{n}\right)$ in G, where n is a nonnegative integer, and $x_{0}=a$ and $x_{n}=b$, that is, a sequence of edges where the terminal vertex of an edge is the same as the initial vertex in the next edge in the path. This path is denoted by $x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ and has length n. We view the empty set of edges as a path of length zero from a to a. A path of length $n \geq 1$ that begins and ends at the same vertex is called a circuit or cycle.

Path in a Relation

Theorem 1: Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^{n}$.

Connectivity Relation A.K.A. Transitive Closures

Let R be a relation on a set A. The connectivity relation R^{*} consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.
In other words:

$$
R^{*}=\bigcup_{n=1}^{\infty} R^{n}
$$

where R^{n} consists of the pairs (a, b) such that there is a path of length n from a to b.
Theorem 2: The transitive closure of a relation R equals the connectivity relation R^{*}.
Theorem 3: Let M_{R} be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R^{*} is

$$
M_{R^{*}}=M_{R} \vee M_{R}^{[2]} \vee M_{R}^{[3]} \vee \ldots \vee M_{R}^{[n]}
$$

Simple Algorithm for Computing Transitive Closure

This algorithm shows how to compute the transitive closure. Runs in $O\left(n^{4}\right)$ bit operations.

```
Algorithm transitive_closure( \(M_{R}\) : zero-one \(n \times n\) matrix)
    \(A=M_{R}\)
    \(B=A\)
    for \(i=2\) to \(n\) do
        \(A=A \odot M_{R}\)
        \(B=B \vee A\)
    end for
    return \(B\left\{B\right.\) is the zero-one matrix for \(\left.R^{*}\right\}\)
```


Warshall's Algorithm

Warhsall's algorithm is a faster way to compute transitive closure. Runs in $O\left(n^{3}\right)$ bit operations.

```
Algorithm Warshall( \(M_{R}\) : zero-one \(n \times n\) matrix)
    \(W=M_{R}\)
    for \(k=1\) to \(n\) do
        for \(i=1\) to \(n\) do
            for \(j=1\) to \(n\) do
                \(w_{i j}=w_{i j} \vee\left(w_{i k} \wedge w_{k j}\right)\)
            end for
        end for
    end for
    return \(W\left\{W=\left[w_{i j}\right]\right.\) is the zero-one matrix for \(\left.R^{*}\right\}\)
```


9.4 pg. 607 \# 1

Let R be the relation on the set $\{0,1,2,3\}$ containing the ordered pairs $(0,1),(1,1),(1,2),(2,0),(2,2),(3,0)$. Find the
a) reflexive closure of R

We need to add (a, a) in R to make a reflexive closure.
$\{(0,0),(0,1),(1,1),(1,2),(2,0),(2,2),(3,0),(3,3)\}$
b) symmetric closure of R

We need to add (b, a) for each (a, b) in R to make a symmetric closure.
$\{(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0)\}$

9.4 pg. 607 \# 5

For the directed graph shown

a) Find the reflexive closure

b) Find the symmetric closure

9.4 pg. 608 \# 25

Use Algorithm 1 to find the transitive closure of these relations on $\{1,2,3,4\}$.
a) $\{(1,2),(2,1),(2,3),(3,4),(4,1)\}$

Transitive Closure

$$
\begin{aligned}
& =M_{R^{*}} \\
& =M_{R} \vee M_{R}^{[2]} \vee M_{R}^{[3]} \vee M_{R}^{[4]}
\end{aligned}
$$

$$
=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \vee\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right] \vee\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

b) $\{(2,1),(2,3),(3,1),(3,4),(4,1),(4,3)\}$

Transitive Closure

$$
\begin{aligned}
& =M_{R^{*}} \\
& =M_{R} \vee M_{R}^{[2]} \vee M_{R}^{[3]} \vee M_{R}^{[4]} \\
& =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

9.4 pg. 608 \# 27

Use Warshall's algorithm to find the transitive closure of these relations on $\{1,2,3,4\}$.
a) $\{(1,2),(2,1),(2,3),(3,4),(4,1)\}$

$$
\begin{aligned}
& W_{0}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] W_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right] W_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] W_{3}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \\
& W_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

b) $\{(2,1),(2,3),(3,1),(3,4),(4,1),(4,3)\}$

$$
\begin{aligned}
& W_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] W_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] W_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] W_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right] \\
& W_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

