9.5 Equivalence Relations

9.5 pg. 615 # 1

Which of these relations on $\{0, 1, 2, 3\}$ are equivalence relations? Determine the properties of an equivalence relation that the others lack.

- a) $\{(0,0), (1,1), (2,2), (3,3)\}$
- b) $\{(0,0), (0,2), (2,0), (2,2), (2,3), (3,2)(3,3)\}$
- c) $\{(0,0), (1,1), (1,2), (2,1), (2,2), (3,3)\}$
- d) $\{(0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2), (3,3)\}$

9.5 pg. 615 # 9

Suppose that A is a nonempty set, and f is a function that has A as its domain. Let R be the relation on A consisting of all ordered pairs (x, y) such that f(x) = f(y). Show that R is an equivalence relation on A.

9.5 pg. 616 # 21

Determine whether the relation with the directed graph shown is an equivalence relation.

9.5 pg. 616 # 23

Determine whether the relation with the directed graph shown is an equivalence relation.

9.5 pg. 616 # 35

What is the congruence class $[n]_5$ (that is, the equivalence class of n with respect to congruence modulo 5) when n is

- a) 2?
- b) 3?
- c) 6?

9.5 pg. 616 # 41

Which of these collections of subsets are partitions of $\{1, 2, 3, 4, 5, 6\}$?

- a) $\{1,2\},\{2,3,4\},\{4,5,6\}$
- b) $\{1\}, \{2, 3, 6\}, \{4\}, \{5\}$
- c) $\{2,4,6\},\{1,3,5\}$
- d) $\{1, 4, 5\}, \{2, 6\}$

9.5 pg. 617 # 47

List the ordered pairs in the equivalence relations produced by these partitions of $\{0, 1, 2, 3, 4, 5\}$.

- a) $\{0\}, \{1, 2\}, \{3, 4, 5\}$
- b) $\{0,1\},\{2,3\},\{4,5\}$
- c) $\{0, 1, 2\}, \{3, 4, 5\}$