11.5 Minimum Spanning Trees

Minimum Spanning Tree

A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

Prim's Algorithm

An algorithm for finding a minimum spanning tree.

- Begin by choosing any edge with smallest weight, putting it into the spanning tree.
- Successively add to the tree edges of minimum weight that are incident to a vertex already in the tree, never forming a simple circuit with those edges already in the tree.
- Stop when $n-1$ edges have been added.

```
Algorithm \(3 \operatorname{Prim}(G\) : weighted connected undirected graph with \(n\) vertices)
    \(T=\) a minimum-weight edge
    for \(i=1\) to \(n-2\) do
        \(e=\) an edge of minimum weight incident to a vertex in \(T\) and not forming a simple circuit
        in \(T\) if added to \(T\)
        \(T=T\) with \(e\) added
    end for
    return \(T\{T\) is a minimum spanning tree of \(G\}\)
```


Kruskal's Algorithm

An algorithm for finding a minimum spanning tree.

- Begin by choosing an edge in the graph with minimum weight.
- Successively add edges with minimum weight that do not form a simple circuit with those edges already chosen.
- Stop after $n-1$ edges have been selected.

```
Algorithm \(4 \operatorname{Kruskal(G}\) : weighted connected undirected graph with \(n\) vertices)
    \(T=\) empty graph
    for \(i=1\) to \(n-1\) do
        \(e=\) any edge in \(G\) with smallest weight that does not form a simple circuit when added to \(T\)
        \(T=T\) with \(e\) added
    end for
    return \(T\{T\) is a minimum spanning tree of \(G\}\)
```


11.5 pg. 802 \# 3

Use Prim's algorithm to find a minimum spanning tree for the given weighted graph.

Choice	Edge	Weight
1	$\{e, f\}$	1
2	$\{c, f\}$	3
3	$\{e, h\}$	3
4	$\{h, i\}$	2
5	$\{b, c\}$	4
6	$\{b, d\}$	3
7	$\{a, d\}$	2
8	$\{g, h\}$	4
		total: 22

11.5 pg. 802 \# 7

Use Kruskal's algorithm to find a minimum spanning tree for the weighted graph in Exercise 3.

Choice	Edge	Weight
1	$\{e, f\}$	1
2	$\{a, d\}$	2
3	$\{h, i\}$	2
4	$\{b, d\}$	3
5	$\{c, f\}$	3
6	$\{e, h\}$	3
7	$\{b, c\}$	4
8	$\{g, h\}$	4
		total: 22

