11.1 Introduction to Trees

11.1 pg. 775 \# 1

Which of these graphs are trees?
a)

b)

c)

d)

e)

f)

11.1 pg. 775 \# 3

Answer these questions about the rooted tree illustrated

a) Which vertex is a root?
b) Which vertices are internal?
c) Which vertices are leaves?
d) Which vertices are children of j ?
e) Which vertex is the the parent of h ?
f) Which vertices are siblings of o ?
g) Which vertices are ancestors of m ?
h) Which vertices are descendants of b ?

11.1 pg. 755 \# 5

Is the rooted tree in Exercise 3 a full m-ary tree for some positive integer m ?

11.1 pg. 755 \# 9

Draw the subtree of the tree in Exercise 3 that is rooted at
a) a.
b) c.
c) e.

11.1 pg. 756 \# 17

How many edges does a tree with 10000 vertices have?

11.1 pg. 756 \# 19

How many edges does a full binary tree with 1000 internal vertices have?

11.1 pg. 756 \# 21

Suppose 1000 people enter a chess tournament. Use a rooted tree model of the tournament to determine how many games must be played to determine a champion, if a player is eliminated after one loss and games are played until only one entrant has not lost. (Assume there are no ties.)

