5.5 Program Correctness

A program, or program segment, S is said to be partially correct with respect to the initial assertion p and the final assertion q if whenever p is true for the input values of S and S terminates, then q is true for the output values of S. The notation $p\{S\} q$ indicates that the program, or program segment, S is partially correct with respect to the initial assertion p and the final assertion q.

5.5 pg. 377 \# 1

Prove that the program segment

$$
\begin{aligned}
& y:=1 \\
& z:=x+y
\end{aligned}
$$

is correct with respect to the initial assertion $x=0$ and the final assertion $z=1$.
Suppose that $x=0$ as per our initial assertion. First, the program will assign $y=1$. Next, $x+y$ is computed and assigned to z. Since $x+y$ is $0+1$, the result is $z=1$. Because $z=1$, the final assertion is satisfied.

5.5 pg .377 \# 3

Verify that the program segment

$$
\begin{aligned}
& x:=2 \\
& z:=x+y \\
& \text { if } y>0 \text { then } \\
& \quad z:=z+1 \\
& \text { else } \\
& \quad z:=0
\end{aligned}
$$

is correct with respect to the initial assertion $y=3$ and the final assertion $z=6$.
Suppose that $y=3$ as per our initial assertion. First, the program will assign $x=2$. Next, $x+y$ is computed and assigned to z. Since $x+y$ is $2+3$, the result is $z=5$. The program will now check the conditional statement $y>0$ for the if...else block. $3>0$, so $z:=z+1$ is executed and the else clause is ignored. Therefore, $z=5+1=6$ and our final assertion is satisfied.

5.5 pg. 377 \# 7

Use a loop invariant to prove that the following program segment for computing the nth power, n is a positive integer, of a real number x is correct.

```
power := 1
\(i:=1\)
while \(i \leq n\)
    power := power \(\cdot x\)
    \(i:=i+1\)
```

Let p be the loop invariant where "power $=x^{i-1}$ and $i \leq n+1$." We must show that p is true before the loop, after an iteration of the loop, and after termination of the loop.

- Before the loop, $i=1$ and power $=x^{1-1}=x^{0}=1$.
- Entering the loop, we know that $i \leq n$. Since i is incremented by 1 , we also know that $i \leq n+1$ after an iteration of the loop. As for power, we know that power ${ }_{\text {initial }}=x^{i-1}$. The new value for power is power ${ }_{\text {new }}=$ power $_{\text {initial }} \cdot x=x^{i-1} \cdot x=x^{i}=x^{(i+1)-1}$. However, because $i=i+1$ from before, power $_{\text {new }}=x^{i-1}$.
- After the termination of the loop, we know that $i \leq n$ is false, so $i=n+1$. Since $i=n+1$, power $=x^{i-1}=x^{n+1-1}=x^{n}$ as desired.

5.5 pg. 377 \# 11

Suppose that both the program assertion $p\{S\} q_{0}$ and the conditional statement $q_{0} \rightarrow q_{1}$ are true. Show that $p\{S\} q_{1}$ also must be true.

Since $p\{S\} q_{0}$ is true, we know that p is true before S is executed. After S is executed, we know that q_{0} is true. Because $q_{0} \rightarrow q_{1}$ is true given the problem statement and q_{0} is true from before, we can conclude q_{1} is true by modus ponens.

