
ICS332 - Spring 2016
Operating Systems

Computer
Architecture
Review

ENIAC (1946)

 Electronic Numerical
Integrator and Calculator
 Stored-Program Computer

(instead of Fixed-Program)
 Vacuum tubes, punch cards
 100 kHz / 5 kIPS

(now ~2-3GHz/5,000 MIPS)
 8x3x100 ft; 27 tons
 150 kW
 Programming with wires

Von-Neumann

 In 1944, John von Neumann joined ENIAC
 He wrote a memo about computer

architecture, formalizing ENIAC ideas
 Eckert and Mauchly have pretty much been

forgotten (they were in the trenches)

 These ideas became the Von Neumann
architecture model
 A processor that performs operations and

controls all that happens
 A memory that contains code and data
 I/O of some kind

Von-Neumann Model

 Amazingly, it’s still possible to think of the computer this
way at a conceptual level (model from ~70 years ago!!!)

 But a computer today

doesn’t look quite like

this

CPU Memory

I/O
System

Von-Neumann Model

 Amazingly, it’s still possible to think of the computer this
way at a conceptual level (model from ~70 years ago!!!)

 But a computer today

doesn’t look quite like

this

CPU Memory

I/O
System

Memory Bus

Data Stored in Memory
 All “information” in the computer is in binary form

 Boolean algebra 1847. Truth value: True / False
 Claude Shannon's MS thesis 1937
 Bit (binary digit): smallest unit of information
 0: false/zero voltage, 1: true/positive voltage (e.g., 5V)

 The basic unit of memory is a byte (octet/octad(e))
 1 Byte = 8 bits, e.g., “0101 1101”

 Each byte in memory is labeled by a unique address
 All addresses in the machine have the same number of bits

 e.g., 16-bit addresses (today 39-bit/48-bit)
 The processor has instructions that say “Read the byte at

address X and give me its value” and “Write some value
into the byte at address X”

Conceptual View of Memory
address content

0000 0000 0000 0000 0110 1110

0000 0000 0000 0001 1111 0100

0000 0000 0000 0010 0000 0000

0000 0000 0000 0011 0000 0000

0000 0000 0000 0100 0101 1110

0000 0000 0000 0101 1010 1101

0000 0000 0000 0110 0000 0001

0000 0000 0000 0111 0100 0000

0000 0000 0000 1000 1111 0101

... ...

Conceptual View of Memory
address content

0000 0000 0000 0000 0110 1110

0000 0000 0000 0001 1111 0100

0000 0000 0000 0010 0000 0000

0000 0000 0000 0011 0000 0000

0000 0000 0000 0100 0101 1110

0000 0000 0000 0101 1010 1101

0000 0000 0000 0110 0000 0001

0000 0000 0000 0111 0100 0000

0000 0000 0000 1000 1111 0101

... ...

At address 0000 0000 0000 0010
the content is 0000 0000

Conceptual View of Memory
address content

0000 0000 0000 0000 0110 1110

0000 0000 0000 0001 1111 0100

0000 0000 0000 0010 0000 0000

0000 0000 0000 0011 0000 0000

0000 0000 0000 0100 0101 1110

0000 0000 0000 0101 1010 1101

0000 0000 0000 0110 0000 0001

0000 0000 0000 0111 0100 0000

0000 0000 0000 1000 1111 0101

... ...

At address 0000 0000 0000 0100
the content is 0101 1110

Both Code and Data in Memory

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Code

Data

 Once a program is
loaded in memory, its
address space contains
both code and data

 To the CPU those are
not really different, but
the programmer knows
which bytes are data
and which are code

 Always conveniently
hidden from you if
you’ve never written
assembly

 But we’ll have to
keep code/data
straight in these
lecture notes

Example Address Space

We need a CPU
 So now we have a memory in which we can store/retrieve bytes

at precise location
 These bytes presumably have some useful meaning to us

 e.g., integers, ASCII codes of characters, floating points numbers,
RGB values

 e.g., instructions that specify what to do with the data; when you buy a
processor, the vendor defines the instruction set (e.g., instruction
“0010 1101” means “increment some useful counter”)

 The CPU (Central Processing Unit) is the piece of hardware
that modifies the content of memory
 In fact, one can really think of the CPU as a device that takes use from

on memory state (i.e, all the stored content) to another memory state
(some new, desired stored content)

 ISA (Instructions Set Architecture): instructions + native data types +
registers + memory architecture + interrupts handling + exceptions
handling

What’s in the CPU?

Memory

I/O
System

CPU

What’s in the CPU?

Memory

I/O
System

Control
UnitALU

Program counter register

register

register

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Registers: the “variables” that hardware instructions work with

Data can be loaded from memory into a register
Data can be stored from a register back into memory
Operands and results of computations are in registers
Accessing a register is really fast
There is a limited number of registers

(x86-64: 16 64-bit registers + 16 FP (128 or 256-bit))

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Arithmetic and Logic Unit: what you do computation with

Used to compute a value based on current register values and
store the result back into a register

+, *, /, -, OR, AND, XOR, etc.

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Program Counter: Points to the next instruction

Special register that contains the address in memory of the next instruction
that should be executed
(gets incremented after each instruction, or can be set to whatever value
whenever there is a change of control flow)

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Current Instruction: Holds the instruction that’s currently being executed

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Control Unit: Decodes instructions and make them happen

Logic hardware that decodes instructions (i.e., based on their bits) and sends
the appropriate (electrical) signals to hardware components in the CPU

current instruction

The CPU in its “Glory”

Fetch-Decode-Execute Cycle
 The Fetch-Decode-Execute cycle

 The control unit fetches the next program instruction from memory
 Using the program counter to figure out where that instruction is

located in the memory
 The instruction is decoded and signals are send to hardware

components
 Send a signal to the memory controller?
 Send a signal to the ALU?

 Operands are fetched from memory and put in registers, if needed
 The ALU executes computation, if any, and store results in the

registers
 Register values are stored back to memory, if needed
 Repeat

 Computers today implement MANY variations on this model
 But one can still program with the above model in mind

 but certainly without (fully) understanding performance issues

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

register

register

register

program counter

current instruction

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1100
register

register

register

program counter

current instruction

Somehow, the program counter is
initialized to some content, which is an
address (we’ll see how that happens
much later)

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1100
register

register

register

program counter

Fetch the content (instruction) at
address 0000 1100, which is “0110
1011”, and store it in the “current
instruction” register

current instruction

0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1101
register

register

register

program counter

Increment the program counter

current instruction

0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1101
register

register

register

program counter

Decode instruction “0110 1011”.
Assume it means: “Load the value at
address 1000 0000 and store it in the
second register”

current instruction

0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1101
register

1111 0000

register

program counter

Send signals to all hardware
components to execute the
instruction: load the value at address
1000 0000, which is “1111 0000” and
store it in the second register

current instruction

0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1101
register

1111 0000

register

program counter

Fetch the content (instruction) at
address 0000 1101, which is “1111
0010”, and store it in the “current
instruction” register

current instruction

1111 0010

1111 0000

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1110
register

register

program counter

Increment the program counter

current instruction

1111 0010

1111 0000

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1110
register

register

program counter

current instruction

1111 0010

1111 0000

Decode instruction “1111 0010”.
Assume it means: “Do a logical NOT
on the second register”

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1110
register

register

program counter

current instruction

1111 0010

0000 1111

Send signals to all hardware
components to execute the
instruction: do a logical NOT on the
second register

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1110
register

register

program counter

Fetch the content (instruction) at address
0000 1110, which is “0010 00011”, and
store it in the “current instruction” register

current instruction

0010 0011

0000 1111

Fetch-Decode-Execute

Memory

0000 1110

1000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction

0010 0001

1111 0000

1111 0010

Increment the program counter

0010 0001

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1111
register

register

program counter

current instruction

0010 0001

0000 1111

Decode instruction “0010 0001”.
Assume it means: “Store the value of
the second register, which is 0000
1111, to memory at address 1111
0010”

Fetch-Decode-Execute

Memory

0000 1110

1000 0000

..

.
..
.

Address Value

0000 1100 0110 1011

0000 1101

0000 11111111 0010

..

.
..
.

Control
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction

0010 0001

1111 0000

1111 0010

0010 0001

Send signals to all hardware
components to execute the
instruction: store the value of the
second register, which is 0000 1111,
to memory at address 1111 0010

Fetch-Decode-Execute
 This is only a simplified view of the way things work
 The “control unit” is not a single thing

 Control and data paths are implemented by several complex
hardware components

 There are multiple ALUs, there are caches, there are
multiple CPUs in fact (“cores”)

 Execution is pipelined: e.g., while one instruction is
fetched, another is executed

 Decades of computer architecture research have gone
into improving performance, thus often leading to
staggering hardware complexity
 Doing smart things in hardware requires more logic gates and

wires, thus increasing processor cost

 But conceptually, fetch-decode-execute is it

In-Class Exercise
 With the following (totally made up and strange, but small)

instruction set definition and with this machine state, what is the
new memory state after execution completes?

0010 00010000 1101

1111 00001000 0000

..

.
..
.

0000 1100 1111 0010

0101 11111000 0001Control
Unit

ALU

program counter

1000 0000

code operation

1111 0000 Increment the register

1111 0010 Decrement the register

0101 1111 Save register to address NOT(register)

1111 0010

register

 Fetch the instruction: “1111 0000”
 Execute it: increment register to value “1111 0011”
 Fetch the next instruction: “1111 0001”
 Execute it: save value “1111 0011” to address “0000 1100”

0010 00010000 1101

1111 00001000 0000

..

.
..
.

0000 1100 1111 0010

0101 11111000 0001Control
Unit

ALU

program counter

1000 0000

code operation

1111 0000 Increment the register

1111 0010 Decrement the register

0101 1111 Save register to address NOT(register)

1111 0010

register

 Fetch the instruction: “1111 0000”
 Execute it: increment register to value “1111 0011”
 Fetch the next instruction: “1111 0001”
 Execute it: save value “1111 0011” to address “0000 1100”

0010 00010000 1101

1111 00001000 0000

..

.
..
.

0000 1100 1111 0010

0101 11111000 0001Control
Unit

ALU

program counter

1000 0001

code operation

1111 0000 Increment the register

1111 0010 Decrement the register

0101 1111 Save register to address NOT(register)

1111 0011

register

 Fetch the instruction: “1111 0000”
 Execute it: increment register to value “1111 0011”
 Fetch the next instruction: “0101 1111”
 Execute it: save value “1111 0011” to address “0000 1100”

0010 00010000 1101

1111 00001000 0000

..

.
..
.

0000 1100 1111 0010

0101 11111000 0001Control
Unit

ALU

program counter

1000 0001

code operation

1111 0000 Increment the register

1111 0010 Decrement the register

0101 1111 Save register to address NOT(register)

1111 0011

register

 Fetch the instruction: “1111 0000”
 Execute it: increment register to value “1111 0011”
 Fetch the next instruction: “0101 1111”
 Execute it: save value “1111 0011” to address “0000 1100”

0010 00010000 1101

1111 00001000 0000

..

.
..
.

0000 1100 1111 0011

0101 11111000 0001Control
Unit

ALU

program counter

1000 0001

code operation

1111 0000 Increment the register

1111 0010 Decrement the register

0101 1111 Save register to address NOT(register)

1111 0011

register

Direct Memory Access
 DMA is used in all modern computers
 It’s a way for the CPU to let memory-I/O operations (data transfers)

occur independently
 Say you want to write 1GiB from memory to some external device like

a disk, network card, graphics card, etc.
 The CPU would be busy during this slow transfer

 Load from memory into registers, write from registers to disk, continuously

 Instead, a convenient piece of hardware called the DMA controller can
make data transfer operations independently of the CPU

 The CPU simply “tells” the DMA controller to initiate a transfer
 Which is done by writing to some registers of the DMA controller

 When the transfer completes, the DMA controller tells the CPU “it’s
done” (by generating an interrupt)
 More on interrupts later

 In the meantime, the CPU can do useful work, e.g., run programs

DMA is not completely free

 To perform data transfers the DMA
controller uses the memory bus

 In the meantime, the code executed by the
CPU likely also uses the memory bus

 Therefore, the two can interfere
 There are several modes in which this

interference can be managed
 DMA has priority
 CPU has priority

 But in general, using DMA leads to much
better performance anyway

Coping with Slow RAM
 5,000 MIPS = 0.2 ns to update a register
 RAM ~ 10ns... 20 times slower
 From the CPU’s perspective, main memory is slow
 Everybody would like to have a computer with a very

large and very fast memory
 Unfortunately, technology (affordably) allows for

either slow and large or fast and small
 We need large main memories for large programs

and data
 What we do: we play a trick to provide the illusion of

a fast memory
 This trick is called the memory hierarchy

The Memory Hierarchy
fast slow

small large

 Real-world has multiple levels of caches (L1, L2, L3)
 Chunks of data are brought in from far-away memory and are

copied and kept around in nearby memory
 Yes, the same data exists in multiple levels of memory at once

 Miss: when a data item is not found in a level (e.g., L1 cache
miss)

 Hit: when a data item is found in a level (e.g., L2 cache hit)

Caching
 Whenever your program accesses a byte of memory what

happens is:
 That byte’s value is brought from slooooow memory into the fast

cache
 byte values around the byte you accesses are also brought from

slooooow memory into the fast cache

 Analogy:
 You need a book from the library
 You go there and find the book on the many shelves of the library
 You bring back home all books on that shelf and put them on your

own bookshelf in your house
 Next time you need that book or one of the books “around it”, it will

take you no time at all to get it
 Presumably all books on a shelf at the library are about the same topic, so

you’ll need the books around the book you wanted in the first place

Why Does it Work?
 Temporal Locality: a program tends to reference

addresses it has recently referenced
 The first access, you pay the cost of going to far-

away/slow memory to fetch the counter’s content
 Subsequent accesses are fast
 This is the “I need that book again” analogy

 Spatial Locality: a program tends to reference
addresses next to addresses it has recently referenced
 The first access of array element i may be costly
 But the first access of array element i+1 is fast (in the

chunk)
 This is the “I need another book on that same shelf”

analogy

Memory Tech. and Management

 Main memory and disk are managed by the OS
 When dealing with a “slow” level, it pays off more to try being

“clever” (i.e., spending more time trying to make good decisions)
 Part of why OSes are doing complicated things, as opposed

to hardware which tries to do simple things fast

and others

SMP Systems

 Symmetric multi processors

Issue: Cache coherency
(see textbook)

Moore’s “Law”

 1965 / Gordon Moore (co-founder of
Intel) predicted that transistor density
in integrated circuits would double
roughly every 24 months

 1975/David House (Intel Executive) ”Chip
performance doubled every 18 months”

 2015 / Gordon Moore: “I see Moore’s law dying
here in the next decade or so.”

 Production Cost; Power consumption... Check by
yourself for Moore's Law 2.0 and 3.0...

Moore’s Law

Source: Wikipedia Moore's Law – 2016-01-10

Multi-core Chips

 Constructors cannot increase clock rate
further
 Power/heat issues

 They bring you multi-core processors
 Multiple “low” clock rate processors on a chip

 It’s really a solution to a problem, not a cool
new advance
 Even though there are many cool/interesting

things about multicore processors

 Most users/programmers would rather
have a 100GHz core than 50 2GHz cores

Multi-Core Systems

Figure 1.7 from the book More realistic picture

registers registers

L1 cache L1 cache

memory

L2 cache

CPU

Multi-CPU Multi-Core Systems

registers registers

L1 cache L1 cache

L2 cache

registers registers

L1 cache L1 cache

L2 cache

memory

CPU CPU

Conclusion

 If you want to know more
 Take ICS312 / ICS331
 Take a computer architecture

course (ICS431)
 See Patterson and Hennessy

 Textbook reading
assignment:

 Sections 1.2 and 1.3

	Slide 1
	ENIAC (1946)
	Von-Neumann
	Von-Neumann Model
	Von-Neumann Model
	Data Stored in Memory
	Conceptual View of Memory
	Conceptual View of Memory
	Conceptual View of Memory
	Both Code and Data in Memory
	We need a CPU
	What’s in the CPU?
	What’s in the CPU?
	What’s in the CPU?
	What’s in the CPU?
	What’s in the CPU?
	What’s in the CPU?
	What’s in the CPU?
	The CPU in its “Glory”
	Fetch-Decode-Execute Cycle
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	Slide 31
	Fetch-Decode-Execute
	Slide 33
	Fetch-Decode-Execute
	Fetch-Decode-Execute
	In-Class Exercise
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Direct Memory Access
	DMA is not completely free
	Coping with Slow RAM
	The Memory Hierarchy
	Caching
	Why Does it Work?
	Memory Tech. and Management
	SMP Systems
	Moore’s Law
	Moore’s Law
	Multi-core Chips
	Multi-Core Systems
	Multi-Proc Multi-Core Systems
	Conclusion

