
ICS332
Operating Systems

OS: An Overview

Why are we studying this?
 After all, you probably will not develop an OS
 Important to understand what you use:

 Develop better (apps);
 What can and cannot be done;
 Performance;
 Why some OS can be better than some other

 Ubiquitous abstractions
 OS concepts are fundamental and re-usable when

implementing apps that are not operating systems
 Complex software systems

 Many of you will contribute to complex software systems
 Lessons learned from OSes study can be applied in other

contexts

Studying OS Today

 Thanks to the open-source movement we have
access to a lot of OS code

 Before 1993 OSes were even more mysterious
 Implementation details of old (commercial) Oses often

reveal how they were pretty cool (or pretty scary)
 In fact, it’s become possible for anyone to create

an OS after reading other OS code (or how to
contribute to an existing OS)

 And thanks to virtualization technology, one can
play with and run OSes easily

 Without compromising one’s computer
 We won’t do that because we’re not doing any C

This Set of Lecture Notes

 This set of lecture notes is a 10,000 ft
overview of the OS

 Many details will be explained throughout
the semester

 Some terms are used, which you may not
be familiar with, and that will all be
explained later

 Some simplifying assumptions are made
(If you know better, then bear with us until a
further lecture)

What is an OS?

What is an OS?
 Typical answer: software layer between the

applications and the hardware because the
hardware would be too difficult for users to use

Applications

OS

Hardware

What is an OS?

Typical answer: it’s “all the code you don’t have to
write” when you wrote your application

(Not quite right as there are tons of non-OS libraries that
you didn’t write as well)

What is an OS?

 Typical wrong answer: It’s the one program that
runs at all times

It’s a misleading view

No need to reserve one CPU for the OS!

What is an OS?

 The OS is a resource abstractor

The OS defines a set of logical resources that
correspond to hardware resources, and a set of well-
defined operations on logical resources

 Disks / Files;
 RAM / Program data

 The OS is a resource allocator

The OS decides who (which running program) gets
what resource (share) and when

● CPU / Processes;
● Disks / Files
● RAM / Program data

How big is an OS?
 The question “What is part of the OS and what isn’t?” is a

difficult one
 What about the windowing system? “system” programs?
 The 1998 lawsuit against Microsoft putting “too much” in what

they called the Operating System (see the book p. 6)
 But here are a few SLOC (Source Lines of Code) numbers

 Windows NT (1993): 6 Million

 Windows XP: ~50 Million
 Windows Vista: ~XP + 10
 Max OS X 10.4: ~86 Million
 Linux kernel 2.6.29 (2009): 11 Million
 Linux 4.3.2 (2015): 17 Million

Ubuntu distribution (not only OS): ~ 250 Million
 No matter: OSes are BIG

Linux Kernel Lines of Code

https://www.linuxcounter.net/statistics/kernel

https://www.linuxcounter.net/statistics/kernel

 When a computer boots, it needs to run a first program:
the bootstrap program

 Stored in Read Only Memory (ROM)
 Called the “firmware”

 The bootstrap program initializes the computer
 Register content, device controller contents, etc.

 It gets a piece of code on a device and execute it
 This code loads the OS kernel (code+data) into memory
 Within the kernel a piece of code is invoked to start the first

process (called “init” on Linux, “launchd” on Mac OS X)
● let's see it... “ps faux | less”

 And then, nothing happens until an event occurs
 more on events in a few slides

How does one start an OS?

Multi-Programming

 Multi-Programming: Modern OSes allow multiple
“jobs” (running programs) to reside in memory
simultaneously

 The OS picks and begins to execute one of the jobs in
memory

 When the job has to wait for “something”, then the OS
picks another job to run

 This is called a context-switch, and improves productivity
 We are used to this now, but it wasn’t always so

 Single-user mode
 Terrible productivity (while you “think”, nobody else is

using the machine)
 Batch processing (jobs in a queue)

 Low productivity (CPU idle during I/O operations)

Time-Sharing

 Time-Sharing: Multi-programming with rapid
context-switching

 Jobs cannot run for “too long”
 Allows for interactivity

 Response time very short
 Each job has the illusion that it is alone on the

system
 In modern OSes, jobs are called processes

 A process is a running program
 There are many processes, some of which are

(partly) in memory concurrently
 Let's run the “ps aux” command on my laptop

The Running OS
 The code of the operating system

resides in memory at a specified
address, as loaded by the
bootstrap program

 At times, some of this code can be
executed by a process
 Branch to some OS code segment
 Return to the program’s code later

 Each process is loaded in a subset
of the memory
 Code + data

 Memory protection among
processes is ensured by the OS
 A process cannot step on another

process’ toes

Running the OS Code?
 The kernel is NOT a running

job
 It’s code (i.e., a data and a

text segment) that resides in
memory and is ready to be
executed at any moment

 When some event occurs

 It can be executed on behalf
of a job whenever requested

 It can do special/dangerous
things

 having to do with hardware

A Note on Kernel Size
 In the previous figure you see that the kernel uses some

space in the physical memory
 As a kernel designer you want to be careful to not use too

much memory!
 Hence the fight about whether new features are truly

necessary in the kernel
 Hence the need to write lean and mean code

 Furthermore, there is no memory protection within the
kernel

 The kernel’s the one saying to a process “segmentation fault”
 Nobody’s watching over the kernel

 So one must be extremely careful when developing kernels
 Hence the reason why Kernel “hacking” is highly respected

Protected Instructions

 A subset of instructions of every CPU is restricted
in usage: only the OS can execute them

 Known as protected (or privileged) instructions
 For instance, only the OS can:

 Directly access I/O devices (printer, disk, etc.)
 Fairness, security

 Manipulate memory management state
 Fairness, security

 Manipulate protected control registers
 Kernel mode, interrupt level (more on all this later)

 Execute the halt instruction that shuts down the
processor

 The CPU needs to know whether it can execute a
protected instruction or not...

User vs. Kernel Mode
 All modern processors support (at least) two modes

of execution:
 User mode: In this mode protected instructions cannot be

executed
 Kernel mode: In this mode all instructions can be

executed
 User code executes in user mode
 OS code executes in kernel mode
 The mode is indicated by a status bit in a protected

control register
 The CPU checks this bit before executing a protected

instruction
 Setting the mode bit is, of course, a protected

instruction

User vs. Kernel Mode

Control
Unit

ALU

register

register

register

program counter

current instruction

User vs. Kernel Mode

Control
Unit

ALU

register

register

register

program counter

current instruction

mode

User vs. Kernel Mode

 Decode instruction
 Determine if instruction is

privileged or not
 Based on the instruction

code (e.g., the binary
code for all privileged
instructions could start
with ’00’)

 If instruction is privileged and
mode == user, then abort!

 Raise a “trap”

Control
Unit

ALU

register

register

register

program counter

current instruction

mode

User vs. Kernel Mode

 There can be multiple modes
 multiple levels in the kernel (Embedded

systems)

 MS-DOS had only one mode, because it
was written for the Intel 8088, which had
no mode bit
 A user program could wipe out the whole

system due to a bug (or a malicious user)

OS Events

 An event is an “unusual” change in control flow
 A usual change is some “branch” instruction within a

user program for instance

 An event stops execution, changes mode, and
changes context

 i.e., it starts running kernel code

 The kernel defines a handler for each event type
 i.e., a piece of code executed in kernel mode

 Once the system is booted, all entries to the
kernel occur as the result of an event

 The OS can be seen as a huge event handler

10K-foot View of Kernel Code

void processEvent(event) {

switch (event.type) {

case NETWORK_COMMUNICATION:

NetworkManager.handleEvent(event);

break;

case SEGMENTATION_FAULT:

case INVALID_MODE:

ProcessManager.handleEvent(event);

break;

...

}

return;

}

OS Events
 There are two kinds of events: interrupts

(asynchronous) and traps (or exceptions or faults)
(synchronous)

 The two terms are often confused (even in the textbook)
 The term fault often refers to unexpected events

 Interrupts are asynchronous
 e.g., some device controller says “something happened”
 e.g. INTR: “incoming data on keyboard” → RESP: “put

the characters in memory for further processing”)
 Traps are synchronous

 You thought you could do something but you can't
 e.g., the CPU tried to execute a privileged instruction

but it’s not in kernel mode
 e.g., a division by zero

OS Events
 When the CPU is interrupted, it stops what it is doing

and immediately transfers execution to a fixed location
in the kernel code

 the “processEvent()” method in my mock-up kernel code a
couple slides ago

 Could result in:
 Some work being done by the kernel
 A user process being terminated (e.g., segmentation fault)
 Notifying a user process of the event

 What about “faults” in the kernel?
 Say dereferencing of a NULL pointer, or a divide by zero
 This is a fatal fault
 UNIX Kernel Panic, Windows blue screen of death

 Kernel is halted, state dumped to a core file, machine is locked
up

https://en.wikipedia.org/wiki/Kernel_panic
https://en.wikipedia.org/wiki/Blue_Screen_of_Death

System Calls
 When a user program needs to do something privileged, it

places a system call
 e.g., to create a process, write to disk, read from the network

card
 A system call is a special kind of trap
 Every Instruction Set Architecture provides a system call

instruction that
 Causes a trap, which “vectors” to a kernel handler
 Passes a parameter determining which system call to place

(a number)
 Saves caller state (PC, regs, mode) so it can be restored

later
 But... On the x86 architecture the instruction is called INT :(

 MOV AH, 9

 INT 21H System call 21h = 33

System Calls

10K-foot View of Kernel Code
void processEvent(event) {

switch (event.type) {

case NETWORK_COMMUNICATION:

NetworkManager.handleEvent(event);

break;

case SEGMENTATION_FAULT:

case INVALID_MODE:

ProcessManager.handleEvent(event);
break;

case SYSTEM_CALL:
SystemCallManager.execute(event);

break;

...

}

return;

}

Timers

 The OS must keep control of the CPU
 Programs cannot get stuck in infinite loop and lock up

the computer
 Programs cannot gain an unfair share of the computer

 One way in which the OS (or kernel) retrieves
control is when an interrupt occurs

 To make sure that an interrupt will occur
reasonably soon, we can use a timer

 The timer interrupts the computer regularly
 The OS always makes sure the timer is set before

turning over control to user code
 Modifying the timer is done via privileged

instructions

10K-foot View of Kernel Code
void processEvent(event) {

Timer.set(1000); // Will generate an event in 1000 time units

switch (event.type) {

case NETWORK_COMMUNICATION:
NetworkManager.handleEvent(event);
break;

case SEGMENTATION_FAULT:

case INVALID_MODE:
ProcessManager.handleEvent(event);
break;

case SYSTEM_CALL:
SystemCallManager.execute(event);
break;

case TIMER:
Timer.handleEvent(event);
break;

...

}

return;

}

Main OS Services

 Process Management
 Memory Management
 Storage Management
 I/O Management
 Protection and Security

Process Management
 A process is a program in execution

 Program: passive entity
 Process: active entity

 The OS is responsible for :
 Creating and deleting processes;
 Suspending and resuming processes;
 Providing mechanisms for process synchronization;
 Providing mechanisms for process communication;
 Providing mechanisms for deadlock handling.

Memory Management
 Memory management determines what is in

memory when
 The kernel is ALWAYS in memory

 The OS is responsible for:
 Keeping track of which parts of memory are currently

being used and by which process
 Deciding which processes (or parts thereof) and

data to move into and out of memory
 Allocating and deallocating memory space as

needed
 The OS is not responsible for memory caching,

cache coherency, etc.
 These are managed by the hardware

Storage Management
 The OS provides a uniform, logical view of

information storage
 It abstracts physical properties to logical storage unit (e.g.,

as a “file”)
 The OS operates File-System management

 Creating and deleting files and directories
 Manipulating files and directories
 Mapping files onto secondary storage
 Backup files onto stable (non-volatile) storage media
 Free-space management
 Storage allocation
 Disk scheduling

Note for Experts: We're talking about the OS not the kernel

I/O Management
 The OS hides peculiarities of hardware

devices from the user
 The OS is responsible for

 Memory management of I/O including buffering
(storing data temporarily while it is being
transferred), spooling (the overlapping of output
of one job with input of other jobs), etc.

 General device-driver interface
So that multiple devices can be used with the same kernel as long
as they offer some standard interface

 Drivers for specific hardware devices

Protection and Security
 Protection: mechanisms for controlling access of

processes to resources defined by the OS
 Security: defense of the system against internal

and external attacks
 including denial-of-service, worms, viruses, identity

theft, theft of service

 The OS provides:
 Memory protection
 Device protection
 User IDs associated to processes and files
 Group IDs for sets of users
 Definition of privilege levels

Privileged Instructions

 In class discussion: which of these
instructions should be privileged, and why?
 Set value of the system timer
 Read the clock
 Clear memory
 Issue a system call instruction
 Turn off interrupts
 Modify entries in device-status table
 Switch from user to kernel mode
 Access I/O device

Privileged Instructions

 In class discussion: which of these
instructions should be privileged, and why?
 Set value of the system timer
 Read the clock
 Clear memory
 Issue a system call instruction
 Turn off interrupts
 Modify entries in device-status table
 Switch from user to kernel mode
 Access I/O device

Sections 1.11 and 1.12

 The textbook has sections on “Computing
environments” and “Open-Source
Operating Systems”
 Make sure you read them!
 They talk about a number of topics that are part

of the general culture that you should have, in
case you don’t have it already

Conclusion

 This set of slides gave a grand tour of
what an OS is and what it does

 We have purposely left many elements not
fully explained... they will be elucidated
throughout the semester

 Reading assignment: Chapter 1
 It’s always a good idea to read and try to

quickly do the “Practice Exercises” at the end
of each chapter

	OS: An Overview
	Why are we Studying this?
	Studying OS Today
	This Set of Lecture Notes
	What is an OS?
	What is an OS?
	Slide 7
	Slide 8
	What is an OS?
	How big is an OS?
	Slide 11
	How does one start an OS?
	Multi-Programming
	Time-Sharing
	The Running OS
	Running the OS Code?
	A Note on Kernel Size
	Protected Instructions
	User vs. Kernel Mode
	User vs. Kernel Mode
	User vs. Kernel Mode
	User vs. Kernel Mode
	User vs. Kernel Mode
	OS Events
	10K-foot View of Kernel Code
	OS Events
	OS Events
	System Calls
	System Calls
	10K-foot View of Kernel Code
	Timers
	10K-foot View of Kernel Code
	Main OS Services
	Process Management
	Memory Management
	Storage Management
	I/O Management
	Protection and Security
	Privileged Instructions
	Privileged Instructions
	Sections 1.11 and 1.12
	Conclusion

