
ICS332
Operating Systems

OS Structures

OS Services and Features

OS Services and Features

Helpful to users Better efficiency/operation

OS Services
 Load and run a program
 Allow a program to end in multiple ways

 e.g., with error codes

OS Services
 Allow programs access to I/O devices

OS Services
 Provides file/directory abstractions
 Allow programs to create/delete/read/write
 Implements permissions

OS Services
 Provides abstractions for processes to

exchange information
 Shared memory
 Message passing

OS Services
 The OS needs to be aware of all errors

 CPU, memory, I/O, etc.
 User programs

 The OS needs to take action

OS Features
 Decides which process gets which resource

when
 CPUs, Memory, I/O, etc.

OS Features
 Keeps track of how much is used by each user

 Can impose limits
 Useful for statistics

OS Features
 Controls access to resources
 Enforces authentication of all users
 Allows users to protect their content

OS Services and Features

OS Interfaces: The CLI (aka Shell)

 Most OSes come with a command-line interpreter (CLI), typically
called the shell

 There are many UNIX Shells (bash, ksh, csh, tcsh, etc.)
 Type “echo $SHELL” in a terminal to see which one you’re using

 The user types commands, and the shell interprets them
 The Shell implements some commands, meaning that the source

code of the Shell contains the code of the commands
 e.g., cd, bg, exit,
 Let's see them all by doing a “man bash” (searching for the last

occurrence of “BUILTIN”)
 The Shell cannot implement all commands (i.e., contain their code):

 It would become huge
 Adding a command would mean modifying the shell, leading users to

do countless updates
 Instead, most Shells simply call system programs

 In fact, the shell doesn’t understand (most) “commands”

OS Interfaces: The Shell (CLI)
 Example in UNIX: “rm file.txt” in fact executes the

“/bin/rm” program that knows how to remove a file
 “rm” is not a UNIX command, it’s the name of a program

 Adding a new “command” to the shell then becomes
very simple

 And we can all add our own
 They are just programs that we think of as “commands”
 In fact, we could write a program, call it “rm”, put its

executable in /bin/, and we have a new rm “command”
 The terms “command” and “system program” are often

used interchangeably
 But it is important to remember that “rm” and “cd”

are very different animals

 type built-in (type -t rm; type -t ll; type -t cd)

System Programs
 Some system programs are simple wrappers around

system calls (see later)
 e.g., /bin/sleep

 Some are very complex
 e.g., /bin/ls

 The term “system program” is in fact rather vague
 Some are thought of as commands, and some as

applications
 Do you think of the javac compiler as a command, an

application or as a system program?
 System programs are not part of the “OS” per se,

but many of them are always installed with it
 The term “OS” is in fact rather vague also

 What is often meant is “Kernel”

OS Interfaces: Graphical (GUI)
 Graphical interfaces appeared in the early

1970s
 Xerox PARC research

 Popularized by Apple’s Macintosh (1980s)
 Many UNIX users prefer the command-line

for many operations, while most Windows
users prefer the GUI
 Mac OS used not to provide a command-line

interface, but Mac OS X does: Terminal.

 Question: is the GUI part of the OS or not?
 More general question: what’s part of the OS?

System Calls
 System calls are the (lowest-level) interface to OS services
 Almost all useful programs need to call OS services

 Could be more or less hidden to the programmer
 Called directly (assembly), somewhat directly (C, C++), or more indirectly (Java)

 Even simple programs can use many system calls
 Example from the book on page 63: a program that copies data from one file to another

System Calls
 On Linux there is a “command” called strace that gives

details about which system calls were placed by a program
during execution
 dtruss on Mac OSX is roughly equivalent

 Let’s look at what it shows us when I copy a large file with
the cp command on my Linux server
 (Create a file with dd) ; strace -xf cp <source> <target>

Let’s count the number of system calls using the wc command
 Let’s try with a tiny file and compare
 Let’s look at the system calls and see if they make sense
 Let’s try very simple commands and see... e.g.

 Conclusion: there are TONS of system calls
 strace can be “attached” to a running program!

 to find out, e.g., why a program is stuck!

Time Spent in System Calls?

 The time command is a simple way to time the
execution of a program

Not great precision/resolution, but fine for getting a rough idea

 Time is used just like strace: place it in front of the
command you want to time

 It reports three times:
 “real” time: wall-clock time (also called elapsed time,

execution time, run time, etc.)
 “user” time: time spent in user code (user mode)
 “system” time”: time spent in system calls (kernel mode)

 Let’s try in on a ls -R command...

Time Spent in System Calls?

 The sum of the user time and the system time
is not necessarily equal to the elapsed time

 Typical execution of a program:

User System

 Any idea what those gray zones are?

time

Time Spent in System Calls?

 The sum of the user time and the system time
is not necessarily equal to the elapsed time

 Typical execution of a program:

User System

time

The program is waiting for
some device (disk, network,
keyboard), as requested by
a system call

Probably more realistic

Time Spent in System Calls?

 The sum of the user time and the system time
is not necessarily equal to the elapsed time

 Typical execution of a program:

User System

time

Some other program is
running on the CPU

APIs
 System calls are mostly accessed by programs via a

high-level Application Program Interface (API)
 API functions can call (multiple) system calls under the cover
 API calls are often simpler than full-fledge system calls

 Some system calls are really complicated (Programmers would likely
write their own “wrappers” anyway)

 In many cases, however, the API call is very similar to the
corresponding system call (just a “wrapper”)

 If the API is standard, then the code can be portable
 Standard APIs:

 Win16, Win32, Win64 API for Windows OS
 POSIX [Portable Operating Systems Interface IEEE-IX] for

UNIX systems (POSIX: HP-UX, AIX, Solaris, OS X; POSIX-
Compliant: Linux, Android, Cygwin)

 The Java API (provides API to the Java Virtual Machine (JVM)
which has OS-like functionality on top of the OS)

Java API Example

 The write method in java.io.OutputStream, to write to a file or network
 b: the byte array that contains the data to be written
 off: the starting offset in array b
 len: the number of bytes to be written

 Similar in spirit (if not in details) to the write system calls in other standard APIS

 Let’s do a “man 2 write” on a Linux system and compare
 The book show the read system call in C (page 64)

The JVM and the OS

Hardware

OS

System Calls

System Call API

User code, libraries, etc.

 This is the traditional view of
an application running on
top of the OS

 The application uses the
System Call API to place
system calls

 The OS performs work on
behalf of the application for
each system call

 A lot of that work entails
interacting with the
hardware

The JVM and the OS

Hardware

OS

System Calls

System Call API

Java Virtual Machine

 The JVM is just an
application

 It interacts with the OS using
the System Call API

 But it also interprets byte
code that places calls to the
Java API

 The JVM performs work on
behalf of the byte code for
each API call

 Some of this work is then
passed on to the OS from
the JVM via the System Call
API

Java API

Java Program

The JVM and the OS

Hardware

OS

System Calls

System Call API

Java Virtual Machine

 The JVM is just an
application

 It interacts with the OS using
the System Call API

 But it also interprets byte
code that places calls to the
Java API

 The JVM performs work on
behalf of the byte code for
each API call

 Some of this work is then
passed on to the OS from
the JVM via the System Call
API

 The Java API is NOT an
interface to system calls

 BUT some of the API calls
place (more or less direct)
calls to the System Call API

Java API

Java Program

The JVM and the OS

Hardware

OS

System Calls

System Call API

Java Virtual Machine

 A Java program can also
place a “native” (non-
portable) call to some C
code, bypassing the JVM

(See JNI for further info)

Java API

Java Program C/C++ program

The System Call Interface
 Remember that each system call is identified by a number
 The run-time support system provides a system call

interface
 The run-time support system is a set of useful functions built

into libraries included with a compiler
 System calls numbers are stored in an internal table

The Syscall Table

 Let’s look a bit inside the Linux Kernel
 include/[uapi/]asm/unistd_64.h defines syscall

numbers for a 64-bit system
(locate <filename>; updatedb as super-user to create the filenames database)

 There are ~400 system calls
 Can we identify a few of them?

Types of System Calls

 Process control
 File management
 Device management
 Information maintenance
 Communications
 Protection

Read Section 2.4 as “warm up”

We’ll talk about the above in detail in future lectures

OS Design
 We don’t know the best way to design and

implement an OS
 As a result, the internal structure of different

OSes can vary widely
 Luckily, some approaches have worked well

 Goals lead to specifications
 Affected by choice of hardware, type of system
 User goals and System goals

 User goals – operating system should be convenient to
use, easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient

 Basically all the good software engineering that one should almost
always strive for

Mechanisms and Policies
 One ubiquitous principle: separating mechanisms and

policies
 Policy: what should be done
 Mechanism: how it should be done

 Separation is important so that, most of the time, one can
change policy without changing mechanisms

 Mechanisms should be low-level enough that many useful
policies can be built on top of them

 Mechanisms should be high-level enough that implementing
useful policies on top of them is not too labor intensive

 Some OS designs take this separation principle to the
extreme (e.g., Microkernels)

 e.g., Solaris implements completely policy-free mechanisms
 Some OS designs not so much

 e.g., Windows

OS Implementation

 OSes used to be written in assembly
 e.g. MS-DOS (yikes!)

 Modern OSes are written in languages like C,
or “improved” Cs, with a splash of assembly
 Linux, Windows XP
 The OS should be fast, and compilers are

good enough, and machines are fast enough
that it makes sense nowadays to use high-
level languages

 Besides, some small crucial sections can be
rewritten in assembly if needed (not so much for
speed as for calling specific instructions)

OS Structure: Simple
 Early OSes didn’t really have a

precisely defined structure (which
became a problem when they grew
beyond their original scope)

 MS-DOS was written to run in the
smallest amount of space possible,
leading to poor modularity,
separation of functionality, and
security

 e.g., user programs can directly
access some devices!

 the hardware at the time had no
mode bit for user/kernel
differentiation, so security wasn’t
happening anyway

OS Structure: Simple

 Early UNIX also didn’t have a great structure, but
at least had some simple layering

 The huge, monolithic Kernel did everything and was
incredibly difficult to maintain/evolve

OS Structure: Layered

OS Structure: Layered
 Natural way to add more modularity: pack layers on top of

each other
 Layer n+1 uses only layer n

 Everything in layers below is nicely hidden and can be changed
 Simple to build and debug

 debug layer n before looking at layer n+1

 Sounds nice, but what goes in what layers?
 For two functionalities X and Y, one must decide if X is above,

at the same level, or below Y
 This is not always so easy

 And it can be much less efficient
 Going through layers for each system call takes time

 Parameters put on the runtime stack, jump, etc.

 There should be few layers

OS Structure: Microkernels
 By contrast with the growing monolithic UNIX kernel, the microkernel

approach tries to remove as much as possible from the kernel and putting it
all in system programs

 Kernel: process management, memory management, and some communication

 Everything is then implemented with client-server
 A client is a user program
 A server is a running system program, in user space, that provides some service
 Communication is through the microkernel’s communication functionality

 This is very easy to extend since the microkernel doesn’t change
 And no decision problems about layers

 Problem: increased overhead
 WinNT 4.0 had a microkernel... and was slower than Win95
 This was later fixed by putting things back into the no-longer-micro kernel
 WinXP is closer to monolithic than micro
 This shows that OS developers constantly experiment, and you’ll find OS people

strongly disagreeing on OS structure

OS Structure: Microkernels

OS Structure: Modules
 Most modern OSes implement modules

 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Loadable modules can be loaded at boot time or at runtime
 Like a layered interface, since each module has its own interface
 But a module can talk to any other module, so it’s like a

microkernel
 But communication is not done via message passing since

modules are actually loaded into the kernel
 Bottom line:

 Design has advantage of microkernels
 Without the overhead problem

Solaris

 7 default modules
 Others can be added on the fly

Hybrid systems

 Very few modern OSes adhere strictly to
one of these designs

 Instead, they try to take grab the best
features of multiple design ideas

 Typical approach:
 Don’t stray too far away from monolithic, so as

to have good performance
 Most OSes provide the notion of modules

 The book gives three examples
 Mac OSX, iOS, Android

Mac OS X

 Hybrid structure: two kernel layers
 Mach: Memory management, Remote Procedure Calls, Inter-Process

Communication, Thread Scheduling
 One of the oldest micro-kernels

 BSD: Implements all POSIX services (file system, networking, I/O,
dynamically loadable modules, etc.)

 I/O kit: used to develop device drivers (see later)
 Kernel extensions: loadable modules

OS Debugging
 OS debugging is hard

 The kernel is complex and does many hardware things

 A crash dump (like a core dump, but for the kernel, since
kernel failure leads to a crash) can be generated

 But a kernel bug in the file system makes generating a crash
dump difficult

 One possibility: use a special disk area to write crash dump data
 Upon reboot, crash dump data is written to a file in the file

system

Kernighan’s Law
“Debugging is twice as hard as writing the code in the first place.

Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it”

OS Debugging
 Kernel debugging isn’t as much a dark art as it

used to be: we have some tools
 DTrace tool in Solaris, FreeBSD, Mac OS X

(SystemTap for Linux) allows live instrumentation
on production systems

 Probes fire when code is executed, capturing state data
 Section 2.8.3 has many details

 In fact, there are simple command-line tools to do
basic tracing of system calls:

 On a Linux system, we’ve seen strace
 On Max OS X, Solaris there’s truss/dtruss
 On a Windows system: ProcessMonitor (not built-in) / Core OS Tools

for Win 7+ (not sure if available in all Win)

OS Boot
 So how does this thing start anyway?
 The first thing to do is to load the kernel into memory, which

is called booting
 When the computer is powered on, the instruction pointer is

loaded with a particular address, and execution starts there
 At that address is a program called the bootstrap loader
 Like all “firmware”, it is stored in ROM

 Initially, RAM state is completely undefined
 ROM is expensive, so the firmware had better be small

 The bootstrap loader runs diagnostic, initializes registers,
memory, device controllers, etc.

 e.g., all the stuff you see go by when you boot your a
Linux machine

OS Boot
 At this point the OS is still stored on disk
 The bootstrap loader loads a disk block at a standard

location (say block #0 on the disk) into RAM
 This boot block contains a program that knows how to

load the OS
 Or it knows how to load a more complex bootstrap program

into RAM, which then knows how to load the OS
 A disk that has such a boot block is called a boot disk,

a bootable disk, or a system disk (or a disk partition)
 The Kernel is then loaded into memory
 The bootstrap loader starts the Kernel

 Which starts the init process and simply waits for events

Conclusion
 Reading Assignment:

 Textbook, Chapter 2
 Read Programming Project (page 96)

 Adding a system call to Linux
 And play around with it if you’re into it (using

VirtualBox to install Linux on your system)
 lsmod, insmod, rmmod, dmesg

	OS Structures
	OS Services and Features
	OS Services and Features
	OS Services
	OS Services
	OS Services
	OS Services
	OS Services
	OS Features
	OS Features
	OS Features
	OS Services and Features
	OS Interfaces: The Shell (CLI)
	OS Interfaces: The Shell (CLI)
	System Programs
	OS Interfaces: Graphical (GUI)
	System Calls
	System Calls
	Time Spent in System Calls?
	Time Spent in System Calls?
	Time Spent in System Calls?
	Time Spent in System Calls?
	APIs
	Java API Example
	The JVM and the OS
	The JVM and the OS
	The JVM and the OS
	The JVM and the OS
	The System Call Interface
	The Hidden Syscall Table
	Types of System Calls
	OS Design
	Mechanisms and Policies
	OS Implementation
	OS Structure: Simple
	OS Structure: Simple
	OS Structure: Layered
	OS Structure: Layered
	OS Structure: Microkernels
	OS Structure: Microkernels
	OS Structure: Modules
	Solaris
	Hybrid systems
	Mac OS X
	OS Debugging
	OS Debugging
	OS Boot
	OS Boot
	Conclusion

