
ICS332
Operating Systems

Processes

Definition
 A process is a program in execution

 program: passive entity (bytes stored on disk as part of an
executable file)

 becomes a process when it’s loaded in memory

 Multiple processes can be associated to the same program
 on a multi-user node (aka shared server) each user may start an

instance of the same application (e.g., a text editor, the Shell)
 A user can often start multiple instances of the same program

 A running system consists of multiple processes
 OS processes: Processes started by the OS to do “system things”

 Not everything’s in the kernel after all (e.g., ssh daemon)

 User processes
 Execute user code, with the possibility of executing kernel code by going to

kernel mode through system calls

 “job” and “process” are used interchangeably in OS texts

Definition

 What is in a process?
 Other way to think about it: what needs to

be in memory/registers to fully define the
state of a running program?

Definition
 Process =

 code (also called the text)
 initially stored on disk in an executable file

 program counter
 points to the next instruction to execute (i.e., an address

in the code)
 content of the processor’s registers
 a runtime stack
 a data section

global variables (.bss (uninitialized static variables) and
.data (initialized global variables and static local variables)
in x86 assembly)

 a heap
 for dynamically allocated memory (malloc, new, etc.)

Process Address Space

stack

heap

data

text

bounded by
a max size

“Review”: The Stack

 The runtime stack is
 A stack on which items can be pushed or popped
 The items are called activation records
 The stack is how we manage to have programs

place successive function/method calls
 The management of the stack is done entirely on

your behalf by the compiler
 Unless you took ICS312, in which case you saw how

to manage the stack by hand (fun?)

 An activation record contains all the
“bookkeeping” necessary for placing and
returning from a function/method call

“Review”: Activation Record

 Any function needs to have some “state” so that it
can run
 The address of the instruction that should be executed

once the function returns: the return address
 Parameters passed to it by whatever function called it
 Local variables
 The value that it will return

 Before calling a function, the caller needs to also
save the state of its registers

 All the above goes on the stack as part of
activation records, which grows downward

Sample Runtime Stack

 main() calls func(), which calls print()

a.r. for main()

a.r. for func()

a.r. for print()

Sample Runtime Stack

 print() returns

a.r. for main()

a.r. for func()

Sample Runtime Stack

 func() calls add(), which calls g()

a.r. for main()

a.r. for func()

a.r. for add()

a.r. for g()

Sample Runtime Stack

 g() calls h()

a.r. for main()

a.r. for func()

a.r. for add()

a.r. for g()

a.r. for h()

Runtime Stack Growth

 The mechanics for pushing/popping are more
complex than one may think and pretty interesting
(take ICS312)

 The longer the call sequence, the larger the stack
 Especially with recursive calls!!

 The stack can get too large
 Hits some system-specified limit
 Hits the heap

 The famous “runtime stack overflow” error
 Causes a trap, that will trigger the Kernel to terminate

your process with that error
 Typically due to infinite recursion

2 Processes for 1 Program

text text

stack
stack

heap
heap

data data
same size

diff. content

same size
same content

diff. size
diff. content

diff. size
diff. content

Single- and Multi-Tasking
 OSes used to be single-tasking: only one process can be in

memory at a time
 MS-DOS is the best known example

 A command interpreter is loaded upon boot
 When a program needs to execute, no new process is created
 Instead the program’s code is loaded in memory by the command

interpreter, which overwrites part of itself with it!
 Memory used to be very scarce

 The instruction pointer is set to the 1st instruction of the program
 The small left-over portion of the interpreter resumes after the

program terminates and produces an exit code
 This small portion re-loads the full code of the interpreter from disk

back into memory
 The full interpreter resumes and provides the user with his/her

program’s exit code

Single-Tasking with MS-DOS

free
memory

command
interpreter

kernel

free
memory

command
interpreter

kernel

process

idle
full-fledge command-interpreter

running a program
small command-interpreter left

stack

heap

data

text

Multi-Tasking (Multi-Programming)

 Modern OSes support
multi-tasking: multiple
processes can co-exist
in memory

 To start a new
program, the OS
simply creates a new
process (via a system-
call called fork() on a
UNIX system)

free memory

kernel

process #2

process #3

process #1

stack

heap

data

text

stack

heap

data

text

stack

heap

data

text

Kernel Stack?
 Within the kernel, the code calls a series of functions
 Important: the kernel has a fixed-size stack

 It is not very large (e.g., 4KB to 16KB) → ulimit -s
 When writing kernel code, there is no such thing as allocating tons

of temporary variables, or calling tons of nested functions each with
tons of arguments

 That’s a luxury only allowed in user space
 There are many such differences between user-space

development and kernel-space development
 Example of another difference: when writing kernel code, one

doesn’t have access to the standard C library!
 Chicken-and-egg problem
 Would be inefficient anyway

 So the kernel re-implements some useful functions
 e.g., printk() replaces printf() and is implemented in the kernel source

 And yes, the Linux kernel is written in C

Process State

 As a process executes, it may be in various
states

 These states are defined by the OS, but most
OSes use (at least) the states below

Process Control Block
 The OS keeps track of processes in a data structure, the

process control block (PCB), which contains:
 Process state
 Process ID (aka PID)
 Program counter and CPU registers contents

 when saved, allow a process to be restarted later
 CPU-scheduling info

 priority, queue, ... (see future lecture “Scheduling”)
 Memory-management info

 base and limit registers, page table, ... (see future lectures
“Main Memory” and “Virtual Memory”)

 Accounting info
 amount of resources used so far, ...

 I/O status info
 list of I/O devices allocated to the process, open files, ...

Process Control Block
 Figure from the book

 The reality is of course a bit messier
 include/linux/sched.h (look up “task_struct {”)
 See page 110 in the textbook

The Kernel’s “Process Table”
 The Kernel keeps around all the PCB in its memory,

in a data structure often called the Process Table
 Because Kernel size must be bounded, the Process

Table size is also bounded
 Based on a configuration parameter of the kernel, but you

can’t set it to infinity

 Therefore the Process Table can fill up!
 If you keep creating processes that don’t terminate,

eventually you won’t be able to create new processes
 And your system will be in trouble

 It’s very easy to write code that does this
 Called a “fork bomb” (see upcoming slides)

Disclaimer for what Follows
 In all that follows we assume a single-CPU system
 The book talks about threads, and talks about schedulers and

other things in Chapter 3
 The author tends to keep giving preview of future chapters
 I chose to not give too many previews
 You may skip that content in the book until a future lecture

 as mentioned in the reading assignment on the web site

 Important: with the above assumptions, only one process is
executed by the CPU at a time

 Multiple processes may be loaded in memory
 But only one is in the “Running” state
 All others are, e.g., in the “Ready” state

 The OS gives the CPU to a process for a limited amount of
time, then gives it to another process, and so on

Switching between Processes

Switching between Processes
 This switching is called context switching

 The context is the state of the running process
 Context-switching time is pure overhead

 While it happens processes do not do useful work
 Therefore it should be fast

 No more than a few microseconds, and hopefully less
 The hardware can help

 e.g., save all registers in a single instruction
 e.g., multiple register sets

 Switching between register sets is done with a simple instruction
 If more processes than register sets, then revert to the usual

save/restore

 Context switching is the mechanism. The policy is called
scheduling

 See future lecture

Process Creation
 A process may create new

processes, in which case it
becomes a parent

 We obtain a tree of processes
 Each process has a pid

 ppid refers to the parent’s pid

 Example tree, on Solaris

 ps axlw on a Mac OSX
system gives the “tree” (ps
faux / ps --forest -eaf)

Process Creation
 The child may inherit/share some of the resources of its

parent, or may have entirely new ones
 Many variants are possible and we’ll look at what Linux does

 A parent can also pass input to a child
 Upon creation of a child, the parent can either

 continue execution, or
 wait for the child’s completion

 The child could be either
 a clone of the parent (i.e., have a copy of the address

space), or
 be an entirely new program

 Let’s look at process creation in UNIX / Linux
 You can read the corresponding man pages

 “man 2 command” or “man 3 command”

The fork() System Call

 fork() creates a new process
 The child is a copy of the parent, but...

 It has a different pid (and thus ppid)
 Its resource utilization (so far) is set to 0

 fork() returns the child’s pid to the parent,
and 0 to the child
 Each process can find its own pid with the

getpid() call, and its ppid with the getppid() call
 Both processes continue execution after

the call to fork()

fork() Example
pid = fork();
if (pid < 0) {
 fprintf(stdout,”Error: can’t fork()\n”);
 perror(“fork()”);
} else if (pid != 0) {
 fprintf(stdout,”I am the parent and my child has pid %d\n”,pid);
 while (1);
} else {
 fprintf(stdout,”I am the child, and my pid is %d\n”, getpid());
 while (1) ;
}

 You should _always_ check error codes (as above for fork())
 in fact, even for fprintf, although that’s considered overkill
 I don’t do it here for the sake of brevity (see sources on the Web site)

fork_example1.c

fork() and Memory
 What does the following code print?

 int a = 12;
 if (pid = fork()) { // PARENT
 sleep(10); // ask the OS to put me in Waiting

fprintf(stdout,”a = %d\n”,a);
while (1);

 } else { // CHILD
a += 3;
while (1);

 }

fork_example2.c

fork() and Memory
 What does the following code print?

 int a = 12;
 pid = fork();
 if (pid != 0) {
 sleep(10); // ask the OS to put me in Waiting

fprintf(stdout,”a = %d\n”,a);
while (1);

 } else {
a += 3;
while (1);

 }

Answer: 12

fork_example2.c

fork() and Memory

heap

data
a = 12

text

stack

heap

data
a = 12

text

parent child

identical

identical

identical

identical

State of both processes right after fork() completes

stack

fork() and Memory

stack

heap

data
a = 12

text

stack

heap

data
a = 15

text

parent child

activation record for sleep

identical but for
extra activation

record(s)

identical

identical but for a

identical

State of both processes right before sleep returns

fork() and Memory

stack

heap

data
a = 12

text

stack

heap

data
a = 15

text

parent child

activation record for fprintf

identical but for
extra activation

record(s)

identical

identical but for a

identical

State of both processes right before fprintf returns (“12” gets printed)

fork() can be confusing

 How many times does this code print
“hello”?

pid1 = fork();

fprintf(stdout,”hello\n”);

pid2 = fork();

fprintf(stdout,”hello\n”);

fork_example3.c

fork() can be confusing

 How many times does this code print
“hello”?

pid1 = fork();

fprintf(stdout,”hello\n”);

pid2 = fork();

fprintf(stdout,”hello\n”);

fork_example3.c

Answer: 6 times

Fork bombs...

● C:
int main() {

 while (1) { fork(); }
}

● Bash:

:(){ :|: & };:

● Limit the number of processes by user

ulimit -u <maximum number of processes>

The exec() Family of Syscalls
 The “exec” system call replaces the process image by that of

a specific program
 see “man 3 exec” to see all the versions

 Essentially one can specify:
 path for the executable
 command-line arguments to be passed to the executable
 possibly a set of environment variables

 An exec() call returns only if there was an error
 Example in the book: Figure 3.10
 Typical example (note the argv[0] value!!!)

if (fork() == 0) { // runs ls
char *const argv[] = {“ls”, “-l”,”/tmp/”,NULL};
execv(“/bin/ls”, argv);

}
exec_example.c

Process Terminations

 A process terminates itself with the exit()
system call
 This call takes as argument an integer that is

called the process’ exit/return/error code
 All resources of a process are deallocated

by the OS
 physical and virtual memory, open files, I/O

buffers, ...
 A process can cause the termination of

another process
 Using something called “signals” and the kill()

system call

wait() and waitpid()

 A parent can wait for a child to complete
 The wait() call

 blocks until any child completes
 returns the pid of the completed child and the child’s

exit code

 The waitpid() call
 blocks until a specific child completes
 can be made non-blocking

 Let’s look at wait_example1.c and
wait_example2.c on the Web site

 Read the man pages (“man waitpid”)

Processes and Signals
 A process can receive signals, i.e., software interrupts

 It is an asynchronous event that the program must act upon, in
some way

 Signals have many usages, including process synchronization
 We’ll see other, more powerful and flexible process

synchronization tools
 The OS defines a number of signals, each with a name and a

number, and some meaning
 See /usr/include/sys/signal.h or “man 7 signal”

 Signals happen for various reasons
 ^C on the command-line sends a SIGINT signal to the running

command
 A segmentation violation sends a SIGBUS signal to the running

process
 A process sends a SIGKILL signal to another

Manipulating Signals

 Each signal causes a default behavior in the process
 e.g., a SIGINT signal causes the process to terminate

 But most signals can be either ignored or provided
with a user-written handler to perform some action

 Signals like SIGKILL and SIGSTOP cannot be ignored or
handled by the user, for security reasons

 The signal() system call allows a process to specify
what action to do on a signal:

 signal(SIGINT, SIG_IGN); // ignore signal
 signal(SIGINT, SIG_DFL); // set behavior to default
 signal(SIGINT, my_handler);// customize behavior

 handler is as: void my_handler(int sig) { ... }

 Let’s look at a small example of a process that
ignores SIGINT

Signal Example

#include <signal.h>
#include <stdio.h>

void handler(int sig) {
fprintf(stdout,”I don’t want to die!\n”);

 return;
}

main() {
 signal(SIGINT, handler);
 while(1); // infinite loop
}

signal_example.c

They’re dead.. but alive!
 When a child process terminates, it remains as a zombie

 in an “undead” state (until it is “reaped” by the OS)
 Rationale: the child’s parent may still need to place a call

to wait(), or a variant, to retrieve the child’s exit code
 The OS keeps zombies around for this purpose

 They’re not really processes, they do not consume
resources

 They only consume a slot in the OS’s “process table”
 Which may eventually fill up and cause fork() to fail

 Let's look at zombie_example.c on the Web site
 A zombie lingers on until:

 its parent has called wait() for the child, or
 its parent dies

 It is bad practice to leave zombies around unnecessarily

Getting rid of zombies

 When a child exits, a SIGCHLD signal is
sent to the parent

 A typical way to avoid zombies altogether:
 The parent associates a handler to SIGCHLD
 The handler calls wait()
 This way all children deaths are

“acknowledged”
 See nozombie_example.c on the Web site

Orphans
 An orphan process is one whose parent has died
 In this case, the orphan is “adopted” by the process with pid 1

 init on a Linux system / launchd on a Mac OS X system

 The process with pid 1 does handle child termination with a handler for
SIGCHLD that calls wait (just like in the previous slide!)

 Therefore, an orphan never becomes a zombie
 “Trick” to fork a process that’s completely separate from the parent (with no

future responsibilities): create a grandchild and “kill” its parent
if (!fork()) { // code of the child

if (!fork()) { // code of the grandchild, adopted by pid=1

 . . .

 exit(0); // will be reaped by process pid=1

 }

 exit(0); // will be reaped by the parent

} else { // code of the parent

wait(NULL); // wait for the child to exit

}

orphan_example1.c
orphan_example2.c

In a Nutshell

What about Windows?
 See example in Figure 3.11
 In Windows, the CreateProcess() call combines fork()

and exec()
 Separation of fork() and exec() allows many clever “tricks”

in UNIX, which are not possible in Windows
 See also the spawn() functions family

 In Win32 fashion, calls have many arguments
 There is an equivalent to wait(): WaitForSingleObject()
 TerminateProcess() is like kill()

 So, overall, it allows for the same capabilities (which
shouldn’t be surprising), but with a different flavor
 Developers are really opinionated about this

Nowadays because of threads fork() may
seem useless without exec()

More about Threads in the lecture about them

… google-chrome vs firefox

Fork() with no exec() nowadays?

Processes in Java
 In this course you’ll write Java code
 What about Java and processes?
 The JVM doesn’t implement a Process abstraction

similar to C, meaning that there is no notion of
running multiple processes within the JVM
 Partly because supporting several independent

address spaces in the JVM is a pain
 It’s is however possible to create an “external

process” that lives outside the JVM
 Communication is via data streams
 We’ll see this in a future lecture

Conclusion
 Processes are running programs
 OSes provides a rich set of abstractions and system

calls to deal with processes
 Make sure you understand all the examples
 Even better if you experiment yourself by compiling/playing

with them

 In Java, one can only create external “OS” processes
 Multiple independent execution entities in the JVM must be

threads

	Processes
	Definition
	Definition
	Definition
	Process Address Space
	“Review”: The Stack
	“Review”: Activation Record
	Sample Runtime Stack
	Sample Runtime Stack
	Sample Runtime Stack
	Sample Runtime Stack
	Runtime Stack Growth
	2 Processes for 1 Program
	Single- and Multi-Tasking
	Single-Tasking with MS-DOS
	Multi-Tasking (Multi-Programming)
	Kernel Stack?
	Process State
	Process Control Block
	Process Control Block
	The Kernel’s “Process Table”
	Disclaimer for what Follows
	Switching between Processes
	Switching between Processes
	Process Creation
	Process Creation
	The fork() System Call
	fork() Example
	fork() and Memory
	fork() and Memory
	fork() and Memory
	fork() and Memory
	fork() and Memory
	fork() can be confusing
	fork() can be confusing
	Slide 36
	The exec() Family of Syscalls
	Process Terminations
	wait() and waitpid()
	Processes and Signals
	Manipulating Signals
	Signal Example
	They’re dead.. but alive!
	Getting rid of zombies
	Orphans
	In a Nutshell
	What about Windows?
	Slide 48
	Processes in Java
	Conclusion

