
ICS332
Operating Systems

Threads

Definition

Concurrent computing: several
computations are performed during
overlapping time periods (concurrent
instead of sequential)

Concurrent ⊊ Parallel
 Concurrency: Property of a program that can do

multiple things at the same time
More details? => ICS432

Definition
 A thread is a basic unit of CPU utilization within a process
 Multi-threaded process: Concurrent execution of

different parts of the same program
 Each thread has its own

 thread ID
 program counter
 register set
 stack

 It shares the following with other threads within the same
process

 code section
 data section
 the heap (dynamically allocated memory)
 open files and signals

The Typical Figure

A More Detailed Figure

process

(shared) code

(shared) address space

program counter

st
ac

k

program counter

st
ac

k

program counter

st
ac

k

method f method g

global variable

Multi-Threaded Program
 Source-code view

 a blue thread
 a red thread
 a green thread

Advantages of Threads?

 Economy:
 Creating a thread is cheap

 Slightly cheaper than creating a process under MacOSX / Linux
 Much cheaper than creating a process under Windows (createProcess)

 Context-switching between threads is cheap
 Usually cheaper than between processes

 Resource Sharing:
 Threads naturally share memory

 With processes you have to use possibly complicated
IPC (e.g., Shared Memory Segments)

 Having concurrent activities in the same address
space is very powerful

 But fraught with danger

Advantages of Threads?
 Responsiveness

 A program that has concurrent activities is more
responsive

 While one thread blocks waiting for some event, another
can do something

 e.g. Spawn a thread to answer a client request in a client-
server implementation

 This is true of processes as well, but with threads we
have better sharing and economy

 Scalability
 Running multiple “threads” at once uses the machine

more effectively
 e.g., on a multi-core machine

 This is true of processes as well, but with threads we
have better sharing and economy

Drawbacks of Threads

 One drawback of thread-based
concurrency compared to process-based
concurrency: If one thread fails (e.g., a
segfault), then the process fails
 And therefore the whole program

 This leads to process-based concurrency
 e.g., The Google Chrome Web browser
 See

http://www.google.com/googlebooks/chrome/
 Sort of a throwback to the pre-thread era

 Threads have been available for 20+ years
 Very trendy recently due to multi-core architectures

Drawbacks of Threads

 Threads may be more memory-
constrained than processes
 Due to OS limitation of the address space size

of a single process
 Threads do not benefit from memory

protection
 Concurrent programming with Threads is hard

 But so is it with Processes and Shared Memory
Segments

 We will see this a bit in this course, and much
more in ICS432

Threads on My Machine?

 Let’s run ps uxM (or ps -f -m x) and look at
several applications
 …

 Let’s compute the thread/process ratio on
my machine
 Parsing the ps output using sed, for instance

Multi-Threading Challenges

 Typical challenges of multi-threaded
programming
 Dividing activities among threads
 Balancing load among threads
 Split data among threads
 Deal with data dependency and synchronization
 Testing and debugging

 Take ICS432 if you want maximum exposure to
these
 Section 4.2 talks a little bit about this
 Note that you’ll most likely all write multi-threaded

code on multi-core architectures

User Threads vs. Kernel Threads

 Threads can be supported solely in User Space
 Threads are managed by some user-level thread

library (e.g., Java Green Threads)
(i.e.: you can implement your own threads management system and the OS
will not know about it)

 Threads can also be supported in Kernel Space
 The kernel has data structure and functionality to

deal with threads
 Most modern OSes support kernel threads

 In fact, Linux doesn’t really make a difference
between processes and threads (same data
structure)

Many-to-One Model
 Advantage: multi-threading is

efficient and low-overhead
 No syscalls to the kernel

 Major Drawback #1: cannot take
advantage of a multi-core
architecture!

 Major Drawback #2: if one
threads blocks, then all the
others do!

 Examples (User-level Threads):
 Java Green Threads
 GNU Portable Threads

One-to-One Model

 Removes both drawbacks of the Many-to-One Model
 Creating a new threads requires work by the kernel

 Not as fast as in the Many-to-One Model

 Example:
 Linux
 Windows
 Solaris 9 and later

Many-to-Many Model
 A compromise
 If a user thread blocks, the

kernel can create a new kernel
threads to avoid blocking all user
threads

 A new user thread doesn’t
necessarily require the creation
of a new kernel thread

 True concurrency can be
achieved on a multi-core
machine

 Examples:
 Solaris 9 and earlier
 Win NT/2000 with the

ThreadFiber package

Two-Level Model

 The user can say: “Bind this thread to its own kernel thread”

 Example:
 IRIX, HP-UX, Tru64 UNIX
 Solaris 8 and earlier

Thread Libraries

 Thread libraries provide users with ways to
create threads in their own programs
 In C/C++: Pthreads

 Implemented by the kernel

 In C/C++: OpenMP
 A layer above Pthreads for convenient

multithreading in “easy” cases

 In Java: Java Threads
 Implemented by the JVM, which relies on threads

implemented by the kernel

Java Threads

 All memory-management headaches go
away with Java Threads
 In nice Java fashion

 Several programming languages have long
provided constructs/abstractions for writing
concurrent programs
 Modula, Ada, etc.

 Java does it like it does everything else, by
providing a Thread class
 You create a thread object
 Then you can start the thread

Extending the Thread class (All Java)

 To create a thread, you can extend the
Thread class and override its “run()”
method

class MyThread extends Thread {
 public void run() {
 . . .
 }
 . . .
}

MyThread t = new MyThread();

Implementing the Runnable interface (All Java)

 To create a thread, you can implement the
Runnable interface and its “run()” method

class MyStuff implements Runnable {
 public void run() {
 . . .
 }
 . . .
}

MyThread t = new Thread(new MyStuff());

Implementing the Callable interface (Java1.5+)

 Implement the Callable interface and its
“call()” method

 Adds a return type to call() and checked exceptions!

class MyBetterStuff implements Callable<Long> {
 public Long call() throws Exception {
 . . .

 return someLong;
 }
 . . .
}
ExecutorService executor = Executors.newFixedThreadPool(4);
executor.submit(new MyBetterStuff());

Example

public class MyThread extends Thread {
 public void run() {
 for (int i=0; i<10; i++) {
 System.out.println(“Hello world #“+i);
 }
 }
 . . .
}

myThread t = new MyThread();

Spawning a Thread/Runnable

 To launch, or spawn, a thread, you just call
the (encapsulating) thread’s start() method

 WARNING: Don’t call the run() method
directly to launch a thread
 If you call the run() method directly, then you

just call some method of some object, and the
method executes

 Fine, but probably not what you want
 The start() method, which you should not

override, does all the thread launching
 It launches a thread that starts its execution by

calling the run() method

Example
public class MyThread implements Runnable {
 public void run() {
 for (int i=0; i<5; i++) {
 System.out.println(“Hello world #“+i);
 }
 }
}

public class MyProgram {
 public MyProgram() {
 MyThread t = new Thread(new MyThread());
 t.start();
 }
 public static void main(String args[]) {
 MyProgram p = new MyProgram();
 }
}

Example
public class MyThread implements Callable<Integer> {W
 public Integer call() throws Exception {
 for (int i=0; i<5; i++) {
 System.out.println(“Hello world #“+i);
 }
 Thread.sleep(10000);

return 42;
 }
}

public class MyProgram {
 public static void main(String args[]) {
 ExecutorService executor = Executors.newFixedThreadPool(4);
 Future<Long> future = executor.submit(new MyThread());
 long value = future.get();
 //... and after 10000 ms, value is 42
 }
}

What happens
 The previous program runs as a Java process

 that is, a thread running inside the JVM
 When the start() method is called, the main thread

creates a new thread
 We now have two threads

 The “main”, “original” thread
 The newly created thread

 Both threads are running
 The main thread doesn’t do anything
 The new thread prints messages to screen and exits

 When both threads terminate, the process
terminates

 Let’s have the first thread do something as well...

Example
public class myThread extends Thread {
 public void run() {
 for (int i=0; i<5; i++)
 System.out.println(“Hello world #“+i);
 }
}

public class MyProgram {
 public MyProgram() {
 MyThread t = new MyThread();
 t.start();
 for (int i=0; i<5; i++)
 System.out.println(“Beep ”+i);
 }
 public static void main(String args[]) {
 MyProgram p = new MyProgram();
 }
}

What happens?

 Now we have the main thread printing to the
screen and the new thread printing to the
screen

 Question: what will the output be?
 Answer: Impossible to tell for sure

 If you know the implementation of the JVM on your
particular machine, then you may be able to tell

 But if you write this code to be run anywhere, then
you can’t expect to know what happens

 Let’s look at what happens on my laptop for a
program in which on thread prints “#” and the
other prints “.” 1000 times each

Three Sample Output

 Non-deterministic execution
 Somebody decides when a thread runs

 You run for a while, now you run for a while, ...

 This is called thread scheduling

Thread Programming

 Major Challenge: You cannot make any
assumption about thread scheduling

 Here is an example with C on Linux (no JVM)

 Major Difficulty: you may not be able to reproduce a
bug because each execution is different!

The getState() method
 The possible thread states are

 NEW: A thread that hasn’t been started yet
 RUNNABLE: The thread can be run, and may be running as

we speak
 It might not because another runnable thread could be running

 BLOCKED: The thread is blocked on a monitor
 See future lecture

 WAITING: The thread is waiting for another thread to do
something

 e.g., join()
 TIMED_WAITING: The thread is waiting for another thread to

do something, but will give up after a specified time out
 e.g., join()

 TERMINATED: The thread’s run method has returned

Thread Lifecycle: 4 states

RUNNABLE

running not
running

BLOCKED/
WAITING/

TIMED_WAITING
NEW

TERMINATED

start()

Thread Lifecycle: 4 states

RUNNABLE

running not
running

BLOCKED/
WAITING/

TIMED_WAITING
NEW

TERMINATED

start()

synchronization
sleep, timed-join

join

Thread Lifecycle: 4 states

RUNNABLE

running not
running

BLOCKED/
WAITING/

TIMED_WAITING
NEW

TERMINATED

start()

synchronized
time elapsed
waiting done

synchronization
sleep, timed-join

join

Thread Lifecycle: 4 states

RUNNABLE

running not
running

BLOCKED/
WAITING/

TIMED_WAITING
NEW

TERMINATED

start()

synchronized
time elapsed
waiting done

run() method
returns

synchronization
sleep, timed-join

join

Thread Scheduling
 The JVM keeps track of threads, enacts the thread

state transition diagram
 Question: who decides which runnable thread to run?
 Old versions of the JVM used only Green Threads

 User-level threads implemented by the JVM
 Invisible to the O/S

JVMO/S

scheduler
thread

application
threads

Beyond Green Threads

 Green threads have all the disadvantages
of user-level threads (see earlier)
 Most importantly: Cannot exploit multi-core,

multi-processor architectures

 The JVM now provides native threads
 Green threads are typically not available

anymore (in Java)
 you can try to use “java -green” and see what

your system says

 Languages using green threads: Erlang, go...

Java Threads / Kernel Threads

 In modern JVMs, application threads are
mapped to kernel threads

O/S

scheduler
thread

application
threads

JVM

Java Threads / Kernel Threads
 This gets a bit complicated

 The JVM has a thread scheduler for application threads,
which are mapped to kernel threads

 The O/S also schedules kernel threads
 Several application threads could be mapped to the same

kernel thread!

 The JVM is itself multi-threaded!
 We have threads everywhere

 Application threads in the JVM
 Kernel threads that run application threads
 Threads in the JVM that do some work for the JVM

 Let’s look at a running JVM for a program that runs
nothing but an infinite loop...

So what?
 At this point, it seems that we throw a bunch of threads in,

and we don’t really know what happens
 To some extent it’s true, but we have ways to have some

control
 In particular, what happens in the RUNNABLE state?

RUNNABLE

running not
running

 Can we control how multiple RUNNABLE threads become
running or not running?

The yield() method: example
public class MyThread extends Thread {
 public void run() {
 for (int i=0; i<5; i++) {
 System.out.println(“Hello world #“+i);
 Thread.yield();
 }
 }
}

public class MyProgram {
 public MyProgram() {
 MyThread t = new MyThread();
 t.start();
 for (int i=0; i<5; i++) {
 System.out.println(“foo”);
 Thread.yield();
 }
 }
 public static void main(String args[]) {
 MyProgram p = new MyProgram();
 }
}

 With the yield()
method, a thread
will pause and give
other RUNNABLE
threads the
opportunity to
execute for a while

Example Execution

 The use of yield made
the threads’ executions
more interleaved

 Switching between
threads is more frequent

 But it’s still not
deterministic!

 Programs should
NEVER rely on yield()
for correctness

 yield() is really a “hint” to
the JVM

Thread Priorities

 The Thread class has a setPriority() and a
getPriority() method
 A new Thread inherits the priority of the thread

that created it

 Thread priorities are integers ranging
between Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY
 The higher the integer, the higher the priority

What will happen to my threads?

 The Java programmer can give hints to the JVM about what
the threads should share CPU resources

 The JVM implements various scheduling policies, that look
like those in the Kernel
 See next set of lecture notes

 The JVM provides hints to the kernel about how the threads
should share CPU resources

 The kernel implements possibly complex scheduling policies
 In the end

 The programmer tries to influence the JVM
 The JVM tries to influence the kernel
 The Kernel ultimately decides

 Conclusion: you can never know exactly how your threads
will share CPU resources
 Hence non-deterministic executions

The join() method

 The join() method causes a thread to wait for
another thread’s termination

 This is useful for “dispatching” work to a worker
thread and waiting for it to be done

 Example:

Thread t = new MyThread();

 t.start();

 ...

 try { t.join(); } catch (InterruptedException e) { ... }

...

The Runnable Interface

 What if you want to create a thread that extends
some other class?

 e.g., a multi-threaded applet is at the same time a
Thread and an Applet

 Before Java8, Java did not allow for multiple
inheritance

 Which is why it has the concept of interfaces
 So another way to create a thread is to have

runnable objects
 It’s actually the most common approach

 Allows to add inheritance in a slightly easier way after
the fact

 Let’s see this on an example

Runnable Example
public class RunnableExample {

 class MyTask implements Runnable {
 public void run() {
 for (int i=0; i<50; i++)
 System.out.print("#");
 }
 }
 public RunnableExample() {
 Thread t = new Thread(new MyTask());
 t.start();
 for (int i=0; i<50; i++)
 System.out.println(".");
 }
 public static void main(String args[]) {
 RunnableExample p = new RunnableExample();
 }
}

Extends vs. Implement?

 We have seen two options:
 Option #1: “extends Threads”
 Option #2: “implements Runnable”

 Almost always, option #2 above is preferable
since you never know when you'll have to extend
a class

 Most Java APIs and documentation talk about
“Runnable objects”

 For this class it's up to you, but I suggest sticking
to “implements Runnable”

 2016 update :) BETTER: implements Callable<V>

Safe Thread Cancellation
 One potentially useful feature would be for a thread to simply

terminate another thread
 Two possible approaches:

 Asynchronous cancellation
 One thread terminates another immediately

 Deferred cancellation
 A thread periodically checks whether it should terminate

 The problem with asynchronous cancellation:
 may lead to an inconsistent state or to a synchronization problem if

the thread was in the middle of “something important”
 Absolutely terrible bugs lurking in the shadows

 The problem with deferred cancellation: the code is cumbersome
due to multiple cancellation points

 should I die? should I die? should I die?
 In Java, the Thread.stop() method is deprecated, and so

cancellation has to be deferred

Java Thread Recap

 Two ways to create threads
 extends Thread
 implements Runnable / Callable

 You should never just “kill” a thread
 Instead have the thread ask “should I die now?”

regularly

 The book has a entire Java example you should
study (fig. 4.12)

 Many more fascinating “features” (ICS432)

Signals
 We’ve talked about signals for processes

 Signal handlers are either default or user-specified
 signal() and kill() are the system calls

 In a multi-threaded program, what happens?
 Multiple options

 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals

 Most UNIX versions: a thread can say which signals it accepts and
which signals it doesn’t accept

 On Linux: dealing with threads and signals is tricky but well
understood with many tutorials on the matter and man pages

 man pthread_sigmask
 man sigemptyset
 man sigaction

Fork()

 What happens when a thread calls fork()?
 Two possibilities:

 A new process is created that has only one thread
(the copy of the thread that called fork()), or

 A new process is created with all threads of the
original process (a copy of all the threads,
including the one that called fork())

 Some OSes provide both options
 In Linux the first option above is used

 If one calls exec() after fork(), all threads are
“wiped out” anyway

Win XP Threads

 Win XP uses one-to-one mapping
 Many-to-Many via a separate library

 A thread’s defined by its context
 An ID
 A register set
 A user stack and a kernel stack

 For user mode and kernel mode

 A private storage area for convenience

 The OS keeps track of threads in data
structures, as see in the following figure

Win XP Threads

Linux Threads

 Linux does not distinguish between processes
and threads: they’re called tasks

 Kernel data structure: task_struct

 The clone() syscall is used to create a task
 Allows to specify what the new task shares with its

parent
 Different flags lead to something like fork() or like

pthread_create()

Conclusion

 Threads are something you cannot ignore today
 Multi-core programming

 Programming with threads is known to be
difficult, and a lot of techniques/tools are
available

 In this course we focus more on how the OS
implements threads than how the user uses
threads

	Threads
	Definition
	Slide 3
	The Typical Figure
	A More Detailed Figure
	Multi-Threaded Program
	Advantages of Threads?
	Advantages of Threads?
	Drawbacks of Threads
	Drawbacks of Threads
	Threads on My Machine?
	Multi-Threading Challenges
	User Threads vs. Kernel Threads
	Many-to-One Model
	One-to-One Model
	Many-to-Many Model
	Two-Level Model
	Thread Libraries
	Java Threads
	Extending the Thread class
	Slide 21
	Slide 22
	Example
	Spawning a thread
	Example
	Slide 26
	What happens
	Example
	What happens?
	Three Sample Output
	Thread Programming
	The getState() method
	Thread Lifecycle: 4 states
	Slide 34
	Slide 35
	Slide 36
	Thread Scheduling
	Beyond Green Threads
	Java Threads / Kernel Threads
	Java Threads / Kernel Threads
	So what?
	The yield() method: example
	Example Execution
	Thread Priorities
	What will happen to my threads?
	The join() method
	The Runnable Interface
	Runnable Example
	Slide 49
	Safe Thread Cancellation
	Java Thread Recap
	Signals
	Fork()
	Win XP Threads
	Win XP Threads
	Linux Threads
	Conclusion

