
ICS332
Operating Systems

CPU Scheduling

CPU Scheduling
 CPU Scheduling: the decisions made by the OS to figure out

which ready processes/threads should run and for how long
 Necessary in multi-programming environments

 CPU Scheduling is important for system performance and
productivity

 Maximizes CPU utilization so that it’s never idle
 Perhaps make processes “happy”

 The policy is the scheduling strategy
 The mechanism is the dispatcher

 A component of the OS that’s used to switch between processes
 That in turn uses the context switch mechanism

 Must be lightning fast for time-sharing (dispatcher latency)

 There are strong theoretical underpinnings here, but we’ll focus
on pragmatic issues

CPU-I/O Burst Cycle
 Most processes alternate between CPU

and I/O activities
 One talks of a sequence of bursts

 Starting and ending with a CPU burst

 I/O-bound process
 Mostly waiting for I/O
 Many short CPU bursts
 e.g., /bin/cp

 CPU-bound process
 Mostly using the CPU
 Very short I/O bursts if any
 e.g., enhancing an image

 The fact that processes are diverse
makes CPU scheduling difficult

The CPU Scheduler

 Whenever the CPU becomes idle, a ready
process must be selected for execution

 The OS keeps track of process states
 This is called short-term scheduling

 Non-preemptive (or cooperative) scheduling: a
process holds the CPU until it is willing to give it
up

 Preemptive scheduling: a process can be
preempted even though it could have happily
continued executing

 e.g., after some “you’ve had enough” timer expires

Scheduling Decision Points
 Scheduling decisions can occur when:

 #1: A process goes from RUNNING to WAITING
 e.g., waiting for I/O to complete

 #2: A process goes from RUNNING to READY
 e.g., when an interrupt occurs (such as a timer going off)

 #3: A process goes from WAITING to READY
 e.g., an I/O operation has completed

 #4: A process goes from RUNNING to TERMINATED
 #5: A process goes from NEW to READY

 Non-preemptive scheduling: #1, #4
 Windows 3.x, Mac OS 9 (->2001)

 Preemptive scheduling: #1, #2, #3, #4, #5
 Windows 95 and later, Max OS X, Linux

Preemptive Scheduling
 Preemptive scheduling is good

 No need to have processes willingly give up the CPU
 The OS remains in control

 Preemptive scheduling is bad
 Opens up many thorny issues having to do with process

synchronization
 If a process is in the middle of doing something critical

and gets preempted, then bad things could happen
 What if a process is preempted in the middle of a system

call during which the Kernel’s updating its own data
structures?

 Disabling interrupts each time one enters the kernel is generally
not a good idea

Scheduling Objectives
 Finding the right objective function is an open question
 There are many conflicting goals that one could attempt to

achieve
 Maximize CPU Utilization

 Fraction of the time the CPU isn’t idle
 Maximize Throughput

 Amount of “useful work” done per time unit
 Minimize Turnaround Time

 Time from process creation to process completion
 Minimize Waiting Time

 Amount of time a process spends in the READY state
 Minimize Response Time

 Time from process creation until the “first response” is received

 Question: should we optimize averages, maxima, variances?
 Again, a lot of theory here...

Scheduling Queues
 The Kernel maintains Queues in which processes are placed

 Linked lists of pointers to PCB data structures

 The Ready Queue contains processes that are in the READY state
 Device Queues contain processes waiting for particular devices

Scheduling and Queues

Short-Term, Long-Term
 So far what we’ve described characterizes short-term scheduling

 Something happens, react to it the best you can
 Other options consist in building a plan for the future

 Based on information on the processes, come up with a clever
arrangement of them in time and space

 e.g., come up with a good mix of I/O-bound and CPU-bound
processes to run together

 A short-term scheduler should be fast
 So that it can run every 100ms or so
 Therefore it cannot make very sophisticated decisions

 A long-term scheduler can be slow
 It doesn’t need to run as often
 Therefore it can make sophisticated decisions
 But it needs reasonably accurate information about the job mix,

which is often a steep challenge
 This is really the crux of the problem

Short-Term, Long-Term
 Typically, an OS doesn’t include a long-term scheduler

 Although including “long-term features” in the short-term scheduler
is tempting and done to some extent

 Long-term schedulers are built outside of the OS as an
application/service

 e.g., a batch scheduler for a cluster
 There is a lot of knowledge, research, and software development

targeted to (good) long-term scheduling
 One overriding question: how good is the information we have about

the job mix and how stationary is it?
 How bad is the scheduling when done with bad information?

 “OS Scheduling” typically implies short-term
 Read Section 3.2.2 for further discussion of short-term vs. long-

term scheduling

Short-Term Scheduling Algs
 Now that we understand the reasons and the mechanisms

(queues, dispatcher, context switching) behind short-term
scheduling, the question is: what’s a good policy?
 i.e., what (good) algorithms should be implemented to decide on

which process runs?

 Defining “good” is very difficult, due to the wide range of
conflicting goals
 e.g., having many context switches is bad for throughput

 No useful work is done during a context switch
 e.g., having few context switches is bad for response time

 One thing is certain: the algorithms cannot be overly
complicated so that they can be fast

 Let’s see a few standard algorithms

(Non-Preemptive) FCFS
 FCFS: First Come First Serve
 Straightforward: Implement the Ready Queue as a FIFO
 Problem: the average waiting time can be huge
 Textbook’s example, assuming purely CPU-bound processes

Process Burst Time

 P1 24

 P2 3

 P3 3

 Gantt charts for two orders of (almost simultaneous) arrivals:

P1 P2 P3

24 27 300

P1P3P2

63 300

average wait time = 17

average wait time = 3

(Non-Preemptive) FCFS
 Consider the following situation

 1 CPU-bound process with only a few I/O bursts
 n I/O-bound processes with frequent short CPU bursts

 The “convoy effect”
 All I/O-bound processes block on I/O
 The CPU-bound gets the CPU
 All I/O devices do their work
 All I/O-bound processes go back to READY
 But now they can’t place their next I/O request because they

need the CPU, which is hogged by the CPU-bound process
 Result: I/O resources sit idle even though there are many

processes who could use them

 Non-Premptive FCFS is just not a good idea

FCFS vs Objective Functions

 Maximize CPU Utilization: Excellent (but no I/O!)
 Maximize Throughput: Highly dependent on first

submitted job(s) duration
 Minimize Turnaround Time: Highly dependent on first

submitted job(s) duration
 Minimize Waiting Time: Highly dependent on first

submitted job(s) duration
 Minimize Response Time: Highly dependent on first

submitted job(s) duration

 Non-Premptive FCFS is in general just not a good idea

Shortest Job First (SJF)
 “Shortest-next-CPU-burst” algorithm
 Non-preemptive example:

Process Arrival Time Burst Time
 P1 0.0 10

 P2 2.0 6

 P3 4.0 7

 P4 5.0 2

 Gantt Chart:

180

P1 P4

10 12

P2

25

average wait time = 10P3

average turnaround time = 13.5

average elapsed time = 16.25

Shortest Job First (SJF)
 “Shortest-next-CPU-burst” algorithm
 Preemptive example:

Process Arrival Time Burst Time
 P1 0.0 10

 P2 2.0 6

 P3 4.0 7

 P4 5.0 2

 Gantt Chart:

170

P1 P4
P2

2 5

P1

25

average wait time = 5.75

7 10

P2
P3 average elapsed time = 12

average turnaround time = 14.75

SJF vs Objective Functions

 Maximize CPU Utilization: Excellent (but still no I/O!)
 Maximize Throughput: NonPreemptive: OK /

Preemptive: Good
 Minimize Turnaround Time: NonPreemptive: OK /

Preemptive: Good
 Minimize Waiting Time: Best (!) (see next slide)
 Minimize Response Time: NonPreemptive: OK /

Preemptive: OK

 Non-Premptive SJF is OK; Preemptive is better but is it
the best?

Shortest Job First (SJF)
 Question: How good is a scheduling algorithm?
 In some cases, one can prove optimality for a given metric
 There is a HUGE theoretical literature on the relative merit of

particular algorithms for particular metrics and for particular
hypotheses

 A known result is: SJF is provably optimal for average wait
time

 In the theoretical literature, called: SRPT (Shortest Remaining
Processing Time)

 Optimal with and without preemption
 Big Problem: How can we know the burst durations???

 Perhaps doable for long-term scheduling, but known difficulties
 e.g., rely on user-provided estimates???

 This problem is typical of the disconnect between theory and
practice

 Can we do any good prediction?

Predicting CPU burst durations
 One only knows the duration of a CPU burst once it’s over
 Idea: predict future CPU bursts based on previous CPU bursts
 Exponential averaging of previously observed burst durations

 Predict the future given the past
 Give more weight to the recent past than the remote past

prediction for
burst #n+1

observation
for burst #n

prediction for
burst #n

parameter between 0 and 1
0: don’t care about most recent history

1: care only about the most recent history
.5: some compromise

Exponential Averaging

Priority Scheduling
 SJF is a special case of Priority Scheduling
 Let us assume that we have jobs with various priorities

 Priority: A number in some range (e.g., “0..9”)
 No convention: low number can mean low or high priority

 Priorities can be internal:
 e.g., in SJF it’s the predicted burst time, the number of open files

 Priorities can be external:
 e.g., set by users to specify relative importance of jobs

 Simply implement the Ready Queue as a Priority Queue
 Like SJF, priority scheduling can be preemptive or non-preemptive
 See example in book, nothing difficult 6.3.3
 The problem: will a low-priority process ever run??

 It could be constantly overtaken by higher-priority processes
 It could be preempted by higher-priority processes
 This is called starvation (i.e. indefinite blocking)
 Textbook anecdote/rumor: “When they shut down the IBM 7094 at MIT in 1973, they

found a low-priority process that had been submitted in 1967 and had yet to run.”

 A solution: Priority aging
 Increase the priority of a process as it ages

Round-Robin Scheduling
 RR Scheduling is preemptive and designed for time-sharing
 It defines a time quantum

 A fixed interval of time (10-100ms)
 Unless a process is the only READY process, it never runs for

longer than a time quantum before giving control to another
ready process

 It may run for less than the time quantum if its CPU burst is
smaller than the time quantum

 Ready Queue is a FIFO
 Whenever a process changes its state to READY it is placed at

the end of the FIFO
 Scheduling:

 Pick the first process from the ready queue
 Set a timer to interrupt the process after 1 quantum
 Dispatch the process

RR Scheduling Example

 Process Burst Time
 P1 24

 P2 3

 P3 3

 Typically, higher average wait time than
SJF, but better response time
 And the wait time is bounded!

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

quantum = 4

Picking the Right Quantum

 Trade-off:
 Short quantum: great response/interactivity but high overhead

 Hopefully not too high if the dispatcher is fast enough
 Long quantum: poor response/interactivity, but low overhead

 With a very long time quantum, RR Scheduling becomes FCFS Scheduling

 If context-switching time is 10% of time quantum, then the CPU spends
>10% of its time doing context switches

 In practice, %CPU time spent on switching is very low
 time quantum: 10ms to 100ms
 context-switching time: 10 ms

Multilevel Queue Scheduling
 The RR Scheduling scheme treats all processes equally
 In practice, one often wants to classify processes in

groups, e.g., based on externally-defined process priorities
 Simple idea: use one ready queue per class of processes

 e.g., if we support 10 priorities, we maintain 10 ready queues

 Scheduling within queues
 Each queue has its own scheduling policy
 e.g., High-priority could be RR, Low-priority could be FCFS

 Scheduling between the queues
 Typically preemptive priority scheduling

 A process can run only if all higher-priority queues are empty

 Or time-slicing among queues
 e.g., 80% to Queue #1 and 20% to Queue #2

Multi-Level Queue Example

Multilevel Feedback Queues
 Processes can move among the queues

 If queues are defined based on internal process characteristics, it
makes sense to move a process whose characteristics have
changed

 e.g., based on CPU burst length

 It’s also a good way to implement priority aging

 Let’s look at the example in the textbook
Q0: RR (q=8)

Q1: RR (q=16)

Q2: FCFS

across-queue

priority

high

low

Multilevel Feedback Queues
 This scheme implements a particular CPU scheduling

“philosophy”
 A new process arrives
 It’s placed in Q0 and is, at some point, given a quantum of 8
 If it doesn’t use it all, it’s likely a I/O-bound process and should be

kept in the high-priority queue so that it is assured to get the CPU
on the rare occasions that it needs it

 If it does use it all, then it gets demoted to Q1 and, at some
points, is given a quantum of 16

 If it does use it all, then it’s likely a CPU-bound process and it
gets demoted to Q2

 At that point the process runs only when no non-CPU-intensive
process needs the CPU

 Rationale: non-CPU-intensive jobs should really get the
CPU quickly on the rare occasions they need them,
because they could be interactive processes (this is all
guesswork, of course)

Multilevel Feedback Queues
 The Multilevel Feedback Queues scheme is very

general because highly configurable
 Number of queues
 Scheduling algorithm for each queue
 Scheduling algorithm across queues
 Method used to promote/demote a process

 However, what’s best for one system/workload may
not be best for another

 Systems configurable with tons of parameters always hold
great promises but these promises are hard to achieve

 Also, it requires quite a bit of computation
 We’ll see that (Linux) Kernel developers resort to cool

hacks to speed it up

What’s a Good Scheduling Algorithm?

 Few analytical/theoretical results are available
 Essentially, take two scheduling algorithms A and B, take a metric

(e.g., wait time), and more likely than not you can find one instance
in which A > B, and another instance in which A < B

 In rare cases you can show that an algorithm is optimal (e.g.,
SRPT for average wait time)

 Another option: Simulation
 Test a million cases by producing Gantt Charts (not by hand)
 Compare: A is better than B in 72% of the cases

 Finally: Implementation
 Implement both A and B in the kernel (requires time!)
 Use one for 10 hours, and the other for 10 hours for some

benchmark workload
 Compare: A is better than B because 12% more useful work was

accomplished

Thread Scheduling in Java

 The JVM defines a notion of thread priority
 Vaguely defined, not necessarily preemptive
 Essentially some “threads” are preferred over others,

but you can’t rely on anything clear
 But for very old ones JVMs do things that one would

expect (e.g., preemptive multi-queue round-robin)

 A thread can yield control of the CPU by calling
Thread.yield() (… But don't do it)

 The thread class has Thread.setPriority() and
Thread.getPriotity()
 Priorities are between Thread.MIN_PRIORITY

(lowest) and Thread.MAX_PRIORITY (highest)

Thread Scheduling in Java
 The JVM uses the user-specified

thread priorities to convey
information to the OS, who makes
the final calls

 Thread scheduling in the JVM is
not portable (i.e., when writing
code you cannot assume anything
about thread scheduling)

 Unless you use ThreadPool, in
which case you can configure
the thread pool to be
scheduled precisely

https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

Win XP (and beyond) Scheduling
 Priority-based, time quantum-based, multi-queue, preemptive scheduling

(Section 5.6.2)
 32-level priority scheme: high number, high priority

 Variable class: priorities 1 to 15
 Real-time class: priorities 16 to 31
 (A special memory-management thread runs at priority 0)

 The Win32 API exposes abstract priority concepts to users, which are
translated into numerical priorities

User-settable Priority Class

U
se

r-
se

tta
bl

e
re

la
tiv

e
pr

io
rit

y
w

ith
in

 a
 c

la
ss

Base Priorities
for each class

Win XP (and beyond) Scheduling
 When a thread’s quantum runs out, unless the thread’s in the

real-time class (priority > 15), the thread’s priority is lowered
 This is likely a CPU-bound thread, and we need to keep the system

interactive
 When a thread “wakes up”, its priority is boosted

 It’s likely an IO-bound thread
 The boost depends on what the thread was waiting for

 e.g., if it was the keyboard, it’s definitely an interactive thread and
the boost should be large

 These are the same general ideas as in other OSes (e.g., see
Solaris priority scheeme in textbook): preserving interactivity is a
key concern

 The idle thread:
 Win XP maintains a “bogus” idle thread (priority 1)
 “runs” (and does nothing) if nobody else can run
 Simplifies OS design to avoid the “no process is running” case

Linux Scheduling: 1.2 and 2.2

 The Linux kernel has a long history of
scheduler development

 Kernel 1.2 (1995): simplicity and speed
 Round-Robin scheduling
 Implemented with a circular queue

 Kernel 2.2 (1999): toward sophistication
 Scheduling classes

 real-time, non-preemptible, non-real-time

 Priorities within classes

Linux Priorities
 Priority scheme:

 low value means high priority

Linux Scheduling: 2.4
 2.4: 2001
 The schedule proceeds as a sequence of epochs
 Within each epoch, each task is given a time slice of

some duration
 Time slice durations are computed differently for different

tasks depending on how they used their previous time
slices

 A time slice doesn’t have to be used “all at once”
 A process cant get the CPU multiple times in an epoch,

until its time slice is used

 Once all READY processes have used their time
slice, then the epoch ends, and a new epoch begins
 Of course, some processes are still blocked, waiting for

events, and they’ll wake up during an upcoming epoch

Linux Scheduling: 2.4
 How to compute time slices?

 If a process uses its whole time slice, then it will get the
same one

 If a process hasn’t used its whole time slice (.e.g., because
blocked on I/O) then it gets a larger time slice!

 This may seem counter-intuitive but:
 Getting a larger time slice doesn’t mean you’ll use it if

you’re not READY anyway
 Those processes that block often will thus never user their

(enlarged) time slices
 But, priorities between threads (i.e., how the scheduler

picks them from the READY queue) are computed based
on the time slice duration

 A larger time slice leads to a higher priority

Linux Scheduling: 2.4

 Problem: O(n) scheduling
 At each scheduling event, the scheduler needs to go

through the whole list of ready tasks to pick one to
run

 If n (the number of tasks) is large, then it will take
long to pick one to run

 “Instead of spending your time thinking about it and
wasting time, just run some task already!”

 There were other problems with 2.4 scheduling,
e.g. multi-core machine
 Increasing numbers of cores didn’t make scheduling

easier and schedulers changed dramatically in years

Linux Scheduling: 2.6.0 to 2.6.22
 Kernel 2.6 (2003) tries to resolve the O(n)

problem (… and a few others)

 The so-called “O(1) scheduler”
 Can be seen as implementation tricks so that

one never need to have code that looks like
“for all ready tasks do....”

 During an epoch, a task can be active or
expired
 active task: its time slice hasn’t been fully

consumed
 expired task: has used all of its time slice

Linux Time Slices
 The kernel keeps two arrays of round-robin queues

 One for active tasks: one Round Robin queue per priority level
 One for expired tasks: one Round Robin queue per priority

level

O(1) Scheduling

 The priority array data structure in the Kernel’s
code:

struct prio_array {

int nr_active; // total num of tasks

unsigned long bitmap[5]; // priority bitmap

struct list_head queue[MAX_PRIO]; // the queues

}

 What’s that bitmap thing?
 ICS312 if you're not familiar with bitmaps...

Using a Bitmap for Speed
 The bitmap contains one bit for each priority level

 5*32 = 160 > 141 priority levels
 Initially all bits are set to zero
 When a task of a given priority becomes ready, the corresponding

bit in the bitmap is set to one
 Build a bit mask that looks like 0...010...0
 Do a logical OR

 Finding the highest priority for which there is a ready task becomes
simple: just find the first bit set to 1 in the bitmap

 This doesn’t depend on the number of tasks in the system
 Many ISAs provide an instruction to do just that

 On x86, the instruction’s called bsfl

 Finding the next task to run (in horrible pseudo-code) is then done
easily:

 prio_array.head_queue[bsfl(bitmap)].task_struct
 No looping over all priority levels, so we’re O(1)

Recalculating Time Slices
 When the time slice of a task expires it is moved from the

active array to the expired array
 At this time, the task’s time slice is recomputed

 That way we never have a “recompute all time slices” which would
monopolize the kernel for a while and hinder interactivity

 Maintains the O(1)-time property
 When the active array is empty, it is swapped with the expired

array
 This is a pointer swap, not a copy, so it’s O(1)-time

 Time-slice and priority computations attempt to identify more
interactive processes

 Keeps track of how much they sleep
 Uses priority boosts
 And other bells, and whistles

 All details in “Linux Kernel Development”, Second Edition, by
R. Love (Novell Press)

Linux ≥ 2.6.23
 Problem with the O(1) scheduler: the code in the kernel

became a mess and hard to maintain
 Seems to blur “policy” and “mechanism”?

 CFS: Completely Fair Scheduler
 Developed by the developer of O(1), with ideas from others

 Main idea: keep track of how fairly the CPU has been
allocated to tasks, and “fix” the unfairness

 For each task, the kernel keeps track of its virtual time
 The sum of the time intervals during which the task was given the

CPU since the task started
 Could be much smaller than the time since the task started

 Goal of the scheduler: give the CPU to the task with the
smallest virtual time
 i.e., to the task that’s the least “happy”

Linux ≥ 2.6.23
 Tasks are stored in a red-black tree

 O(log n) time to retrieve the least happy task
 O(1) to update its virtual time once it’s done running for a

while
 O(log n) time to re-insert it into the red-black tree

 As they are given the CPU, tasks migrate from the left
of the tree to the right

 Note that I/O tasks that do few CPU bursts will never
have a large virtual time, and thus will be “high
priority”

 Tons of other things in there controlled by parameters
 e.g., how long does a task run for?

Linux Scheduling
 Not everybody loves CFS

 Some say it just will not work for running thousands of processes in
a “multi-core server” environment

 But then the author never really said it would

 At this point, it seems that having a single scheduler for
desktop/laptop usage and server usage is just really difficult

 Having many configuration parameters is perhaps not helpful
 How do you set them?

 Other schedulers are typically proposed and hotly debated
relatively frequently
 e.g., the BFS (Brain <expletive> Scheduler) for desktop/laptop

machines that tries to be as simple as possible
 One queue, no “interactivity estimators”, ...

Conclusions

 There are many options for CPU scheduling
 Modern OSes use preemptive scheduling
 Some type of multilevel feedback priority

queues is what most OSes do right now
 A common concern is to ensure interactivity

 I/O bound processes often are interactive, and
thus should have high priority

 Having “quick” short-term scheduling is
paramount

	CPU Scheduling
	CPU Scheduling
	CPU-I/O Burst Cycle
	The CPU Scheduler
	Scheduling Decision Points
	Preemptive Scheduling
	Scheduling Objectives
	Scheduling Queues
	Scheduling and Queues
	Short-Term, Long-Term
	Short-Term, Long-Term
	Short-Term Scheduling Algs
	(Non-Preemptive) FCFS
	(Non-Preemptive) FCFS
	Slide 15
	Shortest Job First (SJF)
	Shortest Job First (SJF)
	Slide 18
	Shortest Job First (SJF)
	Predicting CPU burst durations
	Exponential Averaging
	Priority Scheduling
	Round-Robin Scheduling
	RR Scheduling Example
	Picking the Right Quantum
	Multilevel Queue Scheduling
	Multi-Level Queue Example
	Multilevel Feedback Queues
	Multilevel Feedback Queues
	Multilevel Feedback Queues
	What’s a Good Scheduling Algorithm?
	Thread Scheduling in Java
	Thread Scheduling in Java
	Win XP Scheduling
	Win XP Scheduling
	Linux Scheduling: 1.2 and 2.2
	Linux Priorities
	Linux Scheduling: 2.4
	Linux Scheduling: 2.4
	Linux Scheduling: 2.4
	Linux Scheduling: 2.6
	Linux Time Slices
	O(1) Scheduling
	Using a Bitmap for Speed
	Recalculating Time Slices
	Linux ≥ 2.6.23
	Linux ≥ 2.6.23
	Linux Scheduling
	Conclusions

