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a++;
b = a + 2;
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 First thing to do: come up with all possible interleaving
of the instructions assuming that all instruction is
executes entirely without being interrupted
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 Second thing to do: lost updates
 Each line of code consists of multiple “hardware” instructions

 In this case: bad interaction between “a++” and “a--”
 Result: a = 2

 “a--” reads value 1, computes 0, gets interrupted
 “a++” reads value 1, computes 2, gets interrupted
 “a--” writes value 0
 “a++” writes value 2, overwriting the 0

 Result: a = 0
 Same as “a=2” just different order

 Result: a =1
 Everything went well, without lost update

 We end up with two new possible output:

a--;

a = 0, b = 2 a = 2, b = 4
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a = 1, b = 4

a = 0, b = 2

a = 2, b = 4

 Output produced for all possible interleaving of
lines of code
 Can be considered a bug or not depending

on what you application does
 An application must not necessarily be 100%

deterministic to be correct acceptable
 Input could be random anyway

 Output produced due to the lost update
problem
 Typically considered a bug because a

has a value different from 1 after “a++”
and “a--” in the code, and b can take
value 2 which likely makes no sense
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