$$
a=1 ; b=1 \text {; }
$$

■ First thing to do: come up with all possible interleaving of the instructions assuming that all instruction is executes entirely without being interrupted

$a--;$
$a++;$
$b=a+2 ;$

$a++;$
$b=a+2 ;$
$a--;$

$$
a=1 ; b=1 \text {; }
$$

- First thing to do: come up with all possible interleaving of the instructions assuming that all instruction is executes entirely without being interrupted

$$
a=1, b=3
$$

$$
a=1, b=3
$$

$$
a=1, b=4
$$

$$
a=1 ; b=1 \text {; }
$$

- Second thing to do: lost updates
- Each line of code consists of multiple "hardware" instructions
- In this case: bad interaction between "a++" and "a--"
- Result: a = 2
- "a--" reads value 1 , computes 0 , gets interrupted
- "a++" reads value 1 , computes 2 , gets interrupted
- "a--" writes value 0
- "a++" writes value 2 , overwriting the 0
- Result: a = 0
- Same as "a=2" just different order
- Result: a =1
- Everything went well, without lost update
- We end up with two new possible output:

$$
a=0, b=2 \quad a=2, b=4
$$

$$
a=1 ; b=1 \text {; }
$$

- Output produced for all possible interleaving of $a=1, b=3$

$$
a=1, b=3
$$

$$
a=1, b=4
$$

$a=0, b=2$
$a=2, b=4$

- Output produced due to the lost update problem
- Typically considered a bug because a has a value different from 1 after "a++" and "a--" in the code, and b can take value 2 which likely makes no sense

