
a=1; b=1;
a++;
b = a + 2;

Thread #1 Thread #2

 First thing to do: come up with all possible interleaving
of the instructions assuming that all instruction is
executes entirely without being interrupted

a++;

b = a + 2;

a--;

a--;

a++;

b = a + 2;

a--;

a++;

b = a + 2;

a--;



a=1; b=1;
a++;
b = a + 2;

Thread #1 Thread #2

 First thing to do: come up with all possible interleaving
of the instructions assuming that all instruction is
executes entirely without being interrupted

a++;

b = a + 2;

a--;

a--;

a++;

b = a + 2;

a--;

a++;

b = a + 2;

a--;

a = 1, b = 3 a = 1, b = 3 a = 1, b = 4



a=1; b=1;
a++;
b = a + 2;

Thread #1 Thread #2

 Second thing to do: lost updates
 Each line of code consists of multiple “hardware” instructions

 In this case: bad interaction between “a++” and “a--”
 Result: a = 2

 “a--” reads value 1, computes 0, gets interrupted
 “a++” reads value 1, computes 2, gets interrupted
 “a--” writes value 0
 “a++” writes value 2, overwriting the 0

 Result: a = 0
 Same as “a=2” just different order

 Result: a =1
 Everything went well, without lost update

 We end up with two new possible output:

a--;

a = 0, b = 2 a = 2, b = 4



a=1; b=1;
a++;
b = a + 2;

Thread #1 Thread #2
a--;

a = 1, b = 3

a = 1, b = 3

a = 1, b = 4

a = 0, b = 2

a = 2, b = 4

 Output produced for all possible interleaving of
lines of code
 Can be considered a bug or not depending

on what you application does
 An application must not necessarily be 100%

deterministic to be correct acceptable
 Input could be random anyway

 Output produced due to the lost update
problem
 Typically considered a bug because a

has a value different from 1 after “a++”
and “a--” in the code, and b can take
value 2 which likely makes no sense


	Slide 1
	Slide 2
	Slide 3
	Slide 4

