
ICS332
Operating Systems

Virtual Memory (I)

We are in a bind

 With contiguous memory allocation we have a big
problem: we may have a bunch of small holes in
memory when a big process arrives

 A radical solution: break up process address spaces
into tiny bits!

 Typical analogy: If I give you a bunch of cardboard
boxes to fit in a bunch of bins of various sizes, things
get really simple if I give you a box cutter

 In fact, things are very easy if I cut all the boxes in
slices all of the same size (then just put the slices into
the bins in whatever way until all the bins are filled)

 We call each “same-size piece” of a process’ address
space a page, and we talk of “paging”

Paging
 Most systems today structure a

process’ address space as a set
of fixed-size pages

 Requires the OS and the
hardware to work together

 Same structure in memory and on
disk

 Physical memory is structured as
fixed-size frames

 A page can fit in any available
frame

 This allows non-contiguous
allocations

P1, page 0

P1, page 1

P1, page 2

Page Number
 When the CPU issues a logical address, this address is split in

two:
 The logical page number (p)
 The offset within the page (d)
 Essentially, given an address “the byte at address x”, we need to

transform it into “the x-th byte in the y-th page”

 The process has the illusion of contiguous logical pages starting
with page 0

 But in fact, in physical memory, each page is in a frame
 Therefore, the offset in the page is the same as the offset in the frame
 If the y-th page is stored in the z-th frame, then the x-th byte in the y-th

page is also the x-th byte in the z-th frame

 So we need to keep track of where each page is
 To do so, we use a page table

 Important: Each process has its own page table

Page Table

Paging Hardware
Address Translation Hardware

Page Size

 The page size is defined by the hardware
and is a power of 2

 If the size of the logical address space is
2m words, and a page is 2n words then:
 The m-n high-order bits of the address are the

logical page number
 The n low-order bits of the address are the

offset into the page (between 0 and 2n-1)

 In everything from now own, we’re going to
assume that “a word” is “a byte”

Small Example

 32-byte memory
 16-byte address space
 4-byte pages
 4-bit logical addresses
 5-bit physical addresses

Fragmentation
 We can only have internal fragmentation (no external)

 Worst case: a process needs n pages + 1 byte
 On average we expect that each process wastes half a page

 Therefore small pages are good
 But larger pages have advantages

 Smaller page tables, hence less lookup overhead
 Loading many small pages from a hard drive take more time

than loading few large pages
 Typical sizes: 4KiB or 8KiB

 The “getconf PAGESIZE” Linux command will let you know
 Modern OSes support multiple page sizes (Lin: Huge pages;

FreeBSD: superpages; Win: Large pages) thru CPU support.
 The OS keeps track of free frames and of what process is

allocated to which frame

Free Frames

 The OS keeps track of free frames
 Much simpler than keeping track of a list

of holes that all have different sizes as
would be needed for contiguous
allocation

 The data structure is called the free frame
list

 When a process needs a new frame (e.g.,
upon creation) then the OS takes frames
from the free frame list and allocated them
to the process

Giving out Frames

Paging and Hardware
 The address translation hardware had better be very fast

 Each address coming out of the CPU is translated!
 Modern OSes keep the page table of each process in main memory

 And those can be very large, with millions of entries, i.e., several MiBs
 When a new process is given the CPU, the dispatcher loads a

special register with the address of the beginning of the process’
page table: the page-table base register (PTBR)

 This makes it fast to switch page tables
 But it doesn’t do anything to speed up translation

 If anything it adds one level of indirection
 Each memory access will be doubled

 One access to the page table
 One access to the memory location of interest

 Memory is what makes computers slow, so doubling the number of
memory accesses is not a viable option!

Caching, Locality, etc.
 Caching for memory

 Temporal locality: repeated access to the same memory location
 e.g., “sum[i] += x[j]” at each j-loop iteration

 Spatial locality: repeated access to nearby memory locations
 e.g., “x[j+1]” is accessed soon after “x[j]”

 Therefore, we have caches with cache blocks
 We should have even better locality for memory pages:

 A memory page is much bigger than a cache block
 If a program makes an access to a memory page, it will most

likely access that page again next
 Programs rarely jump around many different pages
 You can write one that does, and you’ll see how slow it is!

 Therefore, the same page table entries are looked up and the
same physical pages are returned over, and over, and over

 Seems like a lot of repeated (wasteful) work

Caching Translations
 There should be a cache for recent page number translations
 Goal: avoid most page table lookups
 This can work if this cache is in hardware and is thus

accessible within a cycle
 Just like some special-purpose L1 cache

 The translation look-aside buffer (TLB)
 Each entry is a <key,value> pair
 You give it a key
 That key is compared (in hardware) in parallel with all stored

keys
 If it is found, then a value is returned

 To be fast the TLB is only between 64 and 1,024 entries
 And it’s still a pretty expensive piece of hardware

 TLB contains (a few) recently used page table entries

The TLB

The TLB

In memory!

The TLB

 We talk of TLB hit rate and TLB miss rate
 Like for any other cache

 There must be a replacement policy for the TLB
when it’s full: which entry should be evicted to
make room for a new one?

 Least Recently Used (LRU) is probably good but
expensive

 Random is less good but very cheap
 Some TLBs allow for some entries to be marked

as “un-evictable”
 e.g., entries for Kernel code

What Happens with no TLB?
 I’ve written a program to stress the TLB
 tlb_stress.c (on the Web site)
 On my laptop, running this program gives:

No TLB hits

Context-Switch?

 What happens on a context-switch?
 Simple solution: wipe out the entire TLB

 Called a “TLB flush”
 Because logical page 7 of process A is not in the same

frame as logical page 7 of process B

 ASIDs (Address-space identifiers):
 Each TLB entry is annotated with a process identifier
 The TLB can contain data from multiple processes
 Each lookup attempts to match entry’s ASIDs with the

ASID of the current process
 If mismatch, then it’s a TLB miss

Valid Bit
 Each page table entry is

augmented by a valid bit
 Set to valid if the process is

allowed to access the page
 i.e., it is in the process’

address space
 Set to invalid otherwise

 In this example, the address
space could potentially reach
8 pages, but right now only 6
are used

 More malloc() would use up
the additional pages

 So if the process generates
an address that maps outside
of its current address space,
a trap can be generated by
looking at the valid bit

Shared Pages
 Setting entries in different processes’ page tables

to point to the same frame leads to memory sharing
 Useful for IPC

 Can be implemented with special “shared” pages
containing the shared memory segments

 The Kernel can update all pages tables on the
shmget/shmat system calls

 Useful for sharing code
 Provided the code isn’t self-modifying

 The book says that non-self-modifying code is “re-entrant”,
but there are other conditions necessary to label code as
re-entrant

Sharing Code pages
 Three

processes that
all run a text
editor whose
code fits into 3
pages

 Shared
library

Page Table Entries
 So far we’ve shown page table entries as integers
 But we need to store page table entries in memory, which begs the question: How

many bytes are in a page table entry?
 Let us consider a 32-bit memory (i.e., 4 GiBytes)
 Each entry in the page table can simply be the address of the first byte of a frame

 We could store less since we know this address is a multiple of 4KiB = 2^12,
meaning that its least significant bits are all 0’s

 Since addresses are 32-bit, each page table entry is 4 bytes

4Ki
B

4Ki
B

4Ki
B4Ki

B

4 bytes
...

PTBR

Page Table Structure
 We’ve shown page tables as long contiguous arrays
 This could cause a problem
 Example

 32-bit logical byte-addressable address space
 4KiB pages
 # page table entries: 232/212 = 220

 page table entry size: 4 bytes
 Page table size: 222 = 4 MiB

 Allocating this much contiguous memory is a
problem

 We’ve been trying to break things apart!
 So let’s break the page table apart into... pages

 that’s right: page table pages!!!!

Why do we need page table pages?

 4KiB pages
 Page table entries are 4bytes
 I want my page table to fit in ONE page
 How many page table entries in ONE page?

 212 / 22 = 210

 Therefore I can only have 210 pages in my
address space

 Therefore, my address space can be at
most 210 * 212 bytes = 4 MiBytes

 That’s WAY too small

Hierarchical Page Tables
 Consider a 32-bit logical address space, and a 4KiB page size
 The non-hierarchical (standard) view:

 12 low address bits: offset within a page
 20 high address bits: page number

 Two-level hierarchical view:
 12 low address bits: offset within a page
 10 high address bits: inner page table’s page number
 10 middle address bits: offset within an inner page table page

 Let’s see how this works...

page number offset

p1 offsetp2

Non-Hierarchical

 Assuming a single-level page table, how is a logical address
translated to a physical address?

 Address of the page table entry: PTBR + (page number) * 4
 Address of the page: [PTBR + (page number) * 4)]

 Brackets indicate indirection
 Physical address: [PTBR + (page number) * 4)] + offset

 Let’s now split the page table into pages...

4Ki
B

4Ki
B

4Ki
B4Ki

B

4 bytes

...page number offset

PTBR

Hierarchical

 A page in the system is 4KiB
 Page table entries are 4 bytes
 Therefore, in a page, we can store 2^12 /

2^2 = 2^10 page table entries
 We call such a page a “page table page”
 Since we need a total of 2^32 / 2^12 =

2^20 page table entries, we need 2^20 /
2^10 page table pages

 Let’s see this on a picture...

Hierarchical
4KiB

...
4KiB

4KiB

4KiB

...
4KiB

4KiB

.

.

.

.

page table page w/
2^10 entries

page table page w/
2^10 entries

2^10 page table pages

Hierarchical

 Now we just need to keep track of all page
table pages
 We must have pointers to them

 Conveniently, we have 2^10 page table
pages

 The address of a page is stored with 4 bytes
 So we can store the addresse of all the

page table pages in a page!
 2^10 * 4 = 2^12 = 4KiB = page size

 Yet another picture...

Hierarchical
4KiB

...
4KiB

4KiB

4KiB

...
4KiB

4KiB

.

.

.

.

...

outer page
table

inner page table

 We now have everything
stored in 4KiB pieces,
scattered all over the
memory

 Which is a good thing!

PTBR

Hierarchical

 Logical to Physical translation
 Address of the outer page table entry: PTBR + 4 * p1
 Address of the page table page: [PTBR + 4 * p1]
 Address of the page entry: [PTBR + 4 * p1] + 4 * p2
 Address of the page: [[PTBR + 4 * p1] + 4 * p2]
 Physical address: [[PTBR + 4 * p1] + 4 * p2] + offset

 In this case, p1 is 10-bit and p2 is 10-bit, which works
out very well
 outer page table = 1 page
 inner page table = 2^10 pages
 10+10+12 = 32

p1 offsetp2

Hierarchical Page Tables

 Figures from the book

Hierarchical Page Tables
 With 64-bit addresses, we’re still in trouble

 4KiB page size
 4KiB inner page table page size
 Remains: 64 - 12 - 10 = 42 high bits
 Outer page table size: 242*4 = 244 bytes = 16TB !!

 And this is still assuming that page table entries are 4 bytes!
 They are likely 8 bytes, in which case:

 4KiB page size
 4KiB inner page table page size with 29 entries
 Remains 64 - 12 - 9 = 43 bits
 Outer page table size: 243 * 8 = 64TB!

 So we need a deeper hierarchy, for instance adding one level

p2 offsetp3p1

1010 1232

second outer page

Hierarchical Page Tables

 Even with 3 levels we need 234 = 16GiB for the
second outer page table!
 Again assuming 4-byte page table entries

 One could have many more levels
 But with each level there is one extra indirection,

and thus extra overhead

 Conclusion: Hierarchical page tables become
memory hogs for large address spaces with small
pages
 e.g., 64-bit architectures that would support processes

that use large address spaces with 4KiB pages

Hashed Page Tables

 Pick a maximum (desirable) size for the
page table, say N

 Come up with a hash function that’s
applied to a logical page number and
returns a number from 0 to N-1

 Structure the page table as a hash table
using this hash function
 Logical page numbers that hash to the same

value have their entries stored in a linked list in
a hash table entry

Hashed Page Table

Removes the need for
entries to be contiguous in
memory (at the expense of
much more overhead)

Inverted Page Tables
 Having one page table per process is fast

 The logical page number is an index in the page table
 Or multiple indices in a hierarchical scheme

 Hashing is still pretty fast
 But it consumes a lot of memory

 Especially if page tables are complete, and with with
valid/invalid bits to invalidate unused entries

 The alternative: inverted page table
 One table for all processes
 One entry per physical memory frame
 Each entry is: ASID + logical page number

 As opposed to knowing for each process where its logical
pages are, now for which physical frame we know the
process that owns it an what logical page it corresponds to

Inverted Page Tables

Expensive

Inverted Page Tables

 Memory consumption is much reduced
 The time for a lookup is much larger

 But the TLB helps
 And one could use a hashed inverted page table

 One difficulty: how does one implement
shared memory pages?

 Conclusion: you can have good time
complexity, good space complexity, but not
both

What’s done in practice
 Paging involves both the hardware (e.g., for splitting up address bits into the

relevant pieces) and the kernel (e.g., to manage page tables)
 Most 32-bit architectures have a memory unit that assumes 2-level page tables

 high bits are called the “directory” (index in the outer page table)
 “middle” bits are called the “table” (index in an inner page table page)
 low bits are called the offset (index in a page)

 64-bit architectures add more levels to the hierarchy
 Most use 3 levels, but x86_64 uses 4 levels

 Linux uses hierarchical page tables
 Adapts the number of levels based on what the hardware provides

 How do we deal with page table being too large?
 Systems are configured to limit a process’ maximum address space
 Page tables grow “on demand” as the process’ memory footprint increases

 The deeper the hierarchy, the bigger the saving in memory space

 Large page sizes are becoming more popular (4KiB pages is really small on a system with
32GiB RAM)

 Some systems have used inverted page tables (e.g., IBM RS/6000, PowerPC),
but hierarchical page tables seem to dominate at this point

Segmentation
 Segmentation is a way to structure logical memory

 According to a typical user’s view of memory
 The Goal:

 To allow address spaces to be broken up into logically
independent address spaces

 Makes sharing easier
 Makes protection easier

 e.g., one can prevent modifying code at runtime
 e.g., one can prevent executing data at runtime

 Important: doesn’t have to replace paging
 Paging is about not having big contiguous memory

segments that lead to fragmentation
 One can have both segmentation and paging

 In what follows we assume no paging to make figures simpler

Segmentation

 The address space is a set
of (dynamically
growing/shrinking) pieces

 The programmer doesn’t
really care which piece
comes after which other
piece

 But the programmer cares
that the pieces don’t
overlap

Segmentation
 The logical address space is a collection of segments
 A logical address is then:

 A segment number
 An offset within the segment

 The compiler handles segments and logical addresses produced
contain appropriate segment numbers

 If you write asseMiBly you may have to deal with segments
 In ICS312 we use gcc to compile a driver, which freed us from

dealing with segments by hand
 Typical segments used by a C compiler

 text
 data
 heap
 stacks
 std C library

Segmentation

 We need a segment table
 One entry per segment number
 Each entry has

 base: starting address of the segment
 limit: the length of the segment

 The segment table is stored in memory
 A Segment-Table Base Register (STBR)

 Points to the segment table’s address

 A Segment-Table Length Register (STLR)
 Gives the length of the segment table
 Makes it easy to detect an invalid segment number

Segmentation Hardware

Segmentation Example

Sharing and Protection

 Segments make it simple to implement several
sharing and protection mechanisms

 Segment-level R/W/X protection bits
 The code segment is “R/X”

 Read and execute
 The data segment is “R/W”

 Read and write

 Segment-level sharing
 Share entire code segment
 Share entire global data segment

Example: The IA 32/64

 The Intel architecture provides both segmentation and paging
 A logical address is transformed into a linear address via

segmentation
 logical address = (segment selector, offset)

 A linear address is transformed into a physical address via
paging

 linear address = (page number 1, page number 2, offset)

 All details are in Section 8.7

Conclusion
 Memory Management is at the boundary between

Computer Architecture and Operating Systems
 Summary

 Swapping
 To have more processes than could fit in main memory

 Paging
 To avoid external fragmentation in main memory
 Various page table structures

 To trade off memory space with speed
 Hierarchical pages used often in practice

 Segmentation
 To allow more convenient protection and sharing

 Segmentation and Paging can be used together
 e.g., in the Intel Pentium

	Main Memory (II)
	We are in a bind
	Paging
	Page Number
	Page Table
	Paging Hardware
	Page Size
	Small Example
	Fragmentation
	Free Frames
	Giving out Frames
	Paging and Hardware
	Caching, Locality, etc.
	Caching Translations
	The TLB
	The TLB
	The TLB
	What Happens with no TLB?
	Context-Switch?
	Valid Bit
	Shared Pages
	Sharing Code pages
	Page Table Entries
	Page Table Structure
	Why do we need page table pages?
	Hierarchical Page Tables
	Non-Hierarchical
	Hierarchical
	Hierarchical
	Hierarchical
	Hierarchical
	Hierarchical
	Hierarchical Page Tables
	Hierarchical Page Tables
	Hierarchical Page Tables
	Hashed Page Tables
	Hashed Page Table
	Inverted Page Tables
	Inverted Page Tables
	Inverted Page Tables
	What’s done in practice
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation Hardware
	Segmentation Example
	Sharing and Protection
	Example: The IA 32/64
	Conclusion

