Sample Problem \#1 Solution

- We have a machine with 4 GiB of RAM
- We have a page size of 8 KiB
- We allow processes to have 1 GiB address spaces
- How many bits are used for physical addresses?
$\square 4 \mathrm{GiB}$ of RAM = $2^{\wedge} 32$ bytes: 32 -bit addresses
- How many bits are used for logical addresses?
$\square 1 \mathrm{GiB}$ of RAM $=2^{\wedge} 30$ bytes: 30 -bit addresses
- How many bits are used for logical page numbers?
$\square 1 \mathrm{GiB}$ of RAM $=2^{\wedge} 30$ bytes
$\square 1$ page $=8 \mathrm{KiB}=2^{\wedge} 13$ bytes
\square number of pages in address space: $2^{\wedge} 30 / 2^{\wedge} 13=2^{\wedge} 17$
\square number of bits for logical page numbers: 17

Sample Problem \#2 Solution

- 32-byte memory
- 16-byte address space
- 4-byte pages
- 4-bit logical addresses
- 5-bit physical addresses

0	a
1	b
2	c
3	d
4	e
5	f
6	g
7	h
8	i
9	j
10	k
11	l
12	m
13	n
14	o
15	p

- What is the physical address corresponding to logical address 6?
- logical: byte 2 in page 1 (i.e., the 3rd byte)
- physical: byte 2 in frame 6 (per the page table)
- therefore: physical address = 6 * <frame size> + $2=26$

0	
4	$\begin{aligned} & \mathrm{i} \\ & \mathrm{j} \\ & \mathrm{k} \\ & \mathrm{i} \end{aligned}$
8	$\begin{gathered} \mathrm{m} \\ \mathrm{n} \\ \mathrm{o} \\ \mathrm{p} \end{gathered}$
12	
16	
20	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$
24	$\begin{aligned} & \hline \mathrm{e} \\ & \mathrm{f} \\ & \mathrm{~g} \\ & \mathrm{~h} \\ & \hline \end{aligned}$
28	

Sample Problem \#3 Solution

- Page size: 32 KiB
- Logical addresses: 39 bits
- Page table entry size: 8 bytes
- Question: using 2-level paging, how is a logical address split into its 3 components (p1, p2, offset)?
- Answer:
\square How many bits for the offset? 32 KiB page -> 15-bit offset
\square How many page table entries do we need in total? $2^{39} / 2^{15}=2^{24}$
\square How many page table entries can fit in a page? $32 \mathrm{KiB} / 8$ bytes $=2^{15} / 2^{3}=$ 2^{12}
\square How many page table pages do we need? $2^{24} / 2^{12}=2^{12}$
\square The first-level page table thus fits nicely into a single page that contains 2^{12} pointers to 2^{12} different second-level page table pages. Each such page table page contains 2^{12} pointers to 2^{12} different actual pages.
\square Final answer: p1 = 12, p2 = 12, offset = 15

