Sample Problem \#1

- We have a machine with 4 GiB of RAM
- We have a page size of 8 KiB
- We allow processes to have 1GiB address spaces
- How many bits are used for physical addresses?
- How many bits are used for logical addresses?
- How many bits are used for logical page numbers?

Sample Problem \#2

- 32-byte memory
- 16-byte address space
- 4-byte pages
- 4-bit logical addresses
- 5-bit physical addresses

0	a
1	b
2	c
3	d
4	e
5	f
6	g
7	h
8	i
9	j
10	k
11	l
12	m
13	n
14	o
15	p

- What is the physical address corresponding to logical address 6 ?

page table
logical memory

0	
4	$\begin{aligned} & \mathrm{i} \\ & \mathrm{j} \\ & \mathrm{k} \end{aligned}$
8	$\begin{aligned} & \mathrm{m} \\ & \mathrm{n} \\ & \mathrm{o} \\ & \mathrm{p} \end{aligned}$
12	
16	
20	$\begin{aligned} & \hline a \\ & b \\ & c \\ & c \end{aligned}$
24	$\begin{aligned} & \mathrm{e} \\ & \mathrm{f} \\ & \mathrm{~g} \\ & \mathrm{~h} \\ & \hline \end{aligned}$
28	

physical memory

Sample Problem \#3

- Page size: 32 KiB
- Logical addresses: 39 bits
- Page table entry size: 8 bytes
- Question: using 2-level paging, how is a logical address split into its 3 components (p1, p2, offset)?

