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Virtual Memory
 Allow a process to execute while not completely in

memory
 Part of the address space is kept on disk

 So far, we have assumed that the full address space
must be in memory for a process to execute

 Although dynamic loading broke that assumption a little bit

 Requiring the full process in memory is overkill
 Programs have code that’s not used often
 Programs tend to declare more than they use
 Not everything is needed at the same time!

 Perhaps the process’ address space is just too big
 But we want to conserve memory space anyway



Virtual Memory

 Advantages of partially in-memory processes
 Easy of programming:

 Users can write programs assuming a very large virtual
address space

 Better performance:
 More processes in the ready queue at the same time

 Better CPU utilization: good for the system
 Lower wait times: good for users

 Less I/O is needed to swap processes in/out when main
memory is full

 Programs can be started faster
 Only a few pages are needed initially

 Consider a program that fails right away: it would be really
wasteful to load it entirely, then launch and abort right away



Demand Paging
 Loading the whole process before starting it increases response time
 Demand paging: load a page only when it is needed (i.e., referenced)

 Some pages may never be loaded!

 This is typically called a lazy scheme (as opposed to an eager scheme):

page out

page in



Valid/Invalid Bit
 For each process, the OS needs to keep track of

which pages are in memory and which are on disk
 This is done with a valid bit in page table entries

 a page is marked as valid if it is legal and in
memory

 a page is marked as invalid if it is illegal or on disk
 Initially the bit is set to invalid for all entries
 If the pager guesses right on which pages to bring

in, the process will only reference pages with the
bit set to valid

 During address translation, if the bit is invalid a
trap is generated: a page fault



Valid Bit Example

 Accessing
logical page 3
( content D)
would lead to a
page fault

 Accessing page
2 (content C)
wouldn’t



Page Fault
 Upon receiving a page fault the kernel: 

 Checks whether the page is illegal or just on disk
 The kernel keeps track of where a page is
 If it’s illegal, then likely abort the process

 Finds a free memory frame
 Recall that there is a free frame list in the Kernel

 Schedules a disk access to load the page into the frame
 And put the process on the blocked queue of the paging

manager, so that another process can run in the meantime
 Once the disk access completes, updates the process’

page table with the new logical-physical mapping
 Updates the valid bit of that entry
 Restarts the process, restarting the instruction that was

interrupted by the page fault in the first place



Page Fault



Restarting a Process

 Restarting a process that has page faulted can be easy
 If the fault was on the instruction fetch, then just restart the fetch

 Just decrement the Program Counter register by one
 If the fault was on an operand fetch, then just restart the

instruction in the same way
 Operand will be fetched again, but oh well

 If the fault was on result store, same idea

 Problem: instructions that modify multiple memory locations
 e.g., an instruction that increments [eax] and decrements [ebx]

and that page faults on the [ebx] access
 Then we have to be careful not to increment [eax] twice

 Luckily we have come to love load/store architectures
 Only two instructions access memory: load and store
 Explicit in the ISA or in (hidden) microinstructions



Virtual Memory Performance
 Let p be the probability that a memory access causes a page fault
 Let ma be the memory access time if no fault occurs

 Say 200 ns  (a bit pessimistic)

 Let penalty be the time to resolve a page fault
 Then we have:

 from book: effective access time = (1-p)*ma + p * penalty
 better as effective access time = ma + p * penalty

 How bad is the penalty?
 The bulk of the penalty is the disk access time

 The book makes a case for 8ms
 Could be better due to use of swap partitions

 With these numbers: eff. access time ~ 200 + 8,000,000p
 To get performance degradation of 10%, we need p=0.0000025!!!
 Message: non-very low page fault rate = death 



Fork() and Exec()

 We’ve seen that fork() does a copy of the
address space of the parent process to
create an identical child process

 Most of the time we use exec() right after
fork() to run another program
 Example:  if (!fork()) { exec(“/bin/ls”,...); }

 Why is this a horrible waste? 



Fork() and Exec()

 We’ve seen that fork() does a copy of the
address space of the parent process to
create an identical child process

 Most of the time we use exec() right after
fork() to run another program
 Example:  if (!fork()) { exec(“/bin/ls”,...); }

 Why is this a horrible waste? 

 Why copy an address space to immediately
overwrite it with another?? (that of “/bin/ls”)



Copy-on-Write
 Process creation, i.e., fork(), can be sped up by page

sharing
 Minimize the number of new pages for the new process

 Since fork() is often followed by exec(), no need for full
address space copy

 Copy-on-write
 Parent and Child share all pages
 All writable pages are marked as “copy-on-write”

 e.g., the code isn’t marked as copy-on-write
 If either process modifies a copy-on-write page, then a

copy is made
 Used by WinXP, Linux, Solaris, etc.

 Linux vfork(): parent is suspended
 Used right before exec()



Copy-on-Write

One process writes
to page C



Page Replacement
 Virtual Memory increases multi-programming and

provides the illusion of large address spaces
 But it may run out of memory:

 A page fault occurs
 The free frame list is empty

 There is a need for page replacement
 Evict a page from a frame (victim frame)

 Possibly write it back to disk
 Put the newly needed page in its place

 Page replacement may thus require two page
transfers

 When your main memory is full, and all processes are trying
to access memory, things just get slow
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Page Replacement
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Page Replacement
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Page Replacement
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Page Replacement
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Page Replacement
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Page Replacement
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All pages are kept on disk

 In the previous pictures, it seems that pages are
either in memory or on disk

 But pages are always on disk
 If the system crashes, we don’t want to lose data and

text segments of our executable!

 So, the disk picture should have always been:
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Dirty Bit
 When writing an evicted page back to disk, it is

possible that no change was ever made to that
page

 If it’s a read-only page, e.g., code or input
 If it’s simply not been written to because the process that

owns that page hasn’t gotten around to writing to it yet

 So when evicting a victim page, if it hasn’t been
modified, no need to write it back to disk!

 Each frame (or page) is accompanied with a dirty
bit

 If the bit is set, the page in the frame has been modified
and must be saved back to disk when evicted



Policies
 We now have all the mechanisms, but we need to define the

policies:
 Page replacement algorithm
 Frame allocation algorithm

 Goal: minimize the number of page faults
 Note the contrast

 Scheduling the CPU
 The CPU is so fast that we have to make decisions very quickly
 We use simple algorithms that do OK, hopefully

 Scheduling memory frames
 The disk is so slow, that it’s ok to spend some time making a

decision
 Saving only a very small fraction of the page faults leads to huge

improvements
 We can afford to use more sophisticated algorithms
 But as usual, we work with imperfect information



Evaluating Page Replacement Algs

 Like for CPU scheduling, it’s hard to tell which
algorithm is good

 So we just try a bunch of cases
 A case is defined as:

 Some number of memory frames
 A string of page references

 Either synthetic
 Or collected on a real system

 Output: count of the page faults
 Algorithms in the book are presented for 3

memory frames and the following string:
 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1



FIFO Page Replacement

 Simplest algorithm: always evict the oldest page
 Implemented via a FIFO queue

15 page faults



Optimal Page Replacement
 Assuming we know the future, the best choice: evict the

page that will not come in use for the longest time
 Not possible to implement in practice
 But good to evaluate other algorithms in absolute terms

9 page faults



LRU Page Replacement

 Least Recently Used
 The problem with FIFO is that an old page may be

used all the time
 So it’s likely better to keep track of when a page

was last used

12 page faults



LRU Implementation
 LRU is considered a “good” algorithm
 Question: How to keep track of last time of use for each

page?
 Answer #1: Counters

 Augment each page table entry with a “time of use” field
 Update that field for each memory access
 Upon eviction search for the minimum field across the entries
 High-overhead

 Answer #2: Stack
 A page is moved to the top after each use
 Requires a bunch of pointer shuffling
 But no search for the victim (always at the bottom of the stack)

 In both cases, hardware help is needed to achieve speed



Help from the Hardware

 If the hardware doesn’t provide any help,
forget doing anything other than FIFO

 And the hardware doesn’t typically provide
enough help to implement full-fledge LRU

 Most hardware provides a reference bit
 An additional bit to each page table entry

 And therefore to the TLB
 Set to 1 by the hardware when a page is

accessed
 The reference bit can be used to make

some (somewhat) enlightened decisions



Approximate LRU
 Keep a limited history of the reference bit for each page

 e.g., an extra N bits attached to every entry

 Update this history periodically (e.g., every 100ms) by right-
shifting the reference bit into the bits of the N-bit history

 The page with the smallest history is the approximate least
recently used page

 Example:
 Page #4:  01101110
 Page #12: 00001101 (LRU)
 Page #13: 10100000

 Many pages can have the same history
 Especially if N is small

 So this scheme can be used in combination with a FIFO



Second Chance

 FIFO that relies on the reference bit for history
in addition to page age

 When considering the oldest page for eviction
 If the reference bit is set to 0, evict the page
 If the reference bit is set to 1, set it to 0, and reset

the page’s arrival time (i.e., age = 0)

 Result: A page that keeps getting referenced
is never evicted

 Implementation technique: a circular queue



Second Chance: Figure from Book



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

initially no frame has been referenced



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

After 120ms, 3 frames have been referenced

But no page fault has occurred



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

At time t=150ms we need to pick a victim

We slide the pointer to the right, zeroing out

reference bits along the way until a zero is found

t = 150ms           page fault!



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 0 1 0 0 0 0

The victim’s evicted and a new page arrives (and is referenced)

 The pointer advances



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

By time 320ms, no page fault has occurred and

a few more frames have been references



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

Question: if we now have 2 page faults in a row,  which page will
be evicted?



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

Question: if we now have 2 page faults in a row, which frames
are have a page fault now, which page will be evicted?



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

Question: What will the circular look like once the two page
faults are resolved are where is the pointer?



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 0 1 1 0 0 1 0 0

Question: What will the circular look like once the two page
faults are resolved?



Performance Optimizations
 Keeping a pool of free frames

 Load the new page into a free frame before waiting for
having evicted the victim page

 Remembering ghosts of evictions past
 Assume a pool of free frames is kept
 These free framed are marked free, not wiped out
 So if an evicted page is needed again, it may already be

in a frame marked free and can be retrieved with zero
cost

 Opportunistic un-dirtying
 Whenever the disk’s idle, pick a dirty page, write it out to

disk, and clear its dirty bit
 We like clean pages because we can evict them “for free”



Frame Allocation Algorithms
 Question: how many frames to give to which processes?

 e.g., we have 47 free frames in total, we have 2 new processes, how
many do we give to each?

 Minimum number of frames (to execute any instruction)
 Depends on the architecture
 If an instruction is longer than a word, then it may straddle two frames
 If an instruction allows both memory access and memory indirection,

then we need at least three frames
 One for the instruction
 One for the address access
 One for the data access

 If the degree of indirection is unbounded, then in the worst case one
needs the whole address space in frames

 e.g.,  mov eax, ((((((((((ebx))))))))))
 Unlikely in a real-world ISA

 For a load/store architecture with word-size instructions: 2 frames
 Maximum number of frames: size of physical memory



Frame Allocation

 Equal allocation
 m frames, n processes
 each process gets m/n frames

 Proportional allocation
 if si is the memory size of process pi

 if S is the sum of all process sizes
 each process gets (si/S)*m frames

 Priority allocation
 bias the above to include process priority



NUMA Systems

 Non Uniform Memory Access
 A multi-CPU system can have multiple boards,

each with a CPU and memory
 A CPU can access the memory on its board

faster than that on other boards

 The paging system for a NUMA machine
should try to keep pages close to
processors

 Things at that point get pretty complicated
 Especially throwing in threads



Global/Local Page Replacement
 Local replacement: victim among the page-faulting

process’ pages
 Number of frames per process is kept constant

 Global replacement: Any victim can be selected
 Could be good for high-priority processes
 But then the page-fault performance of a process depends on

other processes and may change from one run to the next

 Global replacement is typically used because it
increases system throughput

 Let processes grab frames when they need them where they
can find them as opposed to everybody in their own space

 Our example a few slides ago assumed global
replacement



Thrashing
 Let’s consider a system with a global page replacement algorithm
 A process needs more frames and increases its page-fault rate 
 It takes frames away from other processes
 These processes now do more page-faults
 As a result the ready queue empties out
 CPU utilization decreases as processes are waiting for the disk
 The CPU scheduler starts a new process to increase utilization
 This process needs frames and joins the “waiting for pages” group
 Another process gets brought in to increase utilization
 No work gets done: everybody’s waiting for pages
 This is called thrashing

 Paradox: to increase CPU utilization we must reduce the
multiprogramming level



Thrashing



Locality
 The way to prevent

thrashing is to provide
each process with the
pages it needs

 easy, right?

 Problem: how do we
know how many pages
a process needs?

 Locality: a process
tends to access pages
in the same area of
the address space for
a while before moving
to another area
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Locality
 The way to prevent

thrashing is to provide
each process with the
pages it needs

 easy, right?

 Problem: how do we
know how many pages
a process needs?

 Locality: a process
tends to access pages
in the same area of
the address space for
a while before moving
to another area



Working Set Strategy

 We can keep track of all the pages
referenced by each process during a
window of the last Δ memory references

 We call this the working set of the process
 The system keeps track of D, the sum of

the sizes of the working set of running
processes

 The system swaps out an entire process
when D is larger than the number of
available memory frames

 As a result, no thrashing happens



Working Set



Working Set

Loading the working set
(a bunch of pfs)



Working Set

Working with the working set
(rare pfs)



Page-Fault Frequency Strategy

 A much simpler approach than working set
estimation is to simply monitor the page fault rate

 We set upper and lower bounds on the page fault
rate of each process

 If the rate is above the upper bound, we give the
process another frame

 If the rate is below the lower bound, we take a page
away from the process

 If no new frame can be given to a process, we
simply suspend it and swap it out entirely

 Just like with the working set strategy



Memory-Mapped Files
 I/O is known to be very expensive

 Each access to the file requires disk access
 Disk seek and access times are very high

 With virtual memory, on-disk address space pages are brought
into RAM and written to disk later

 Why not do the same for files?
 Memory mapping: mapping a disk block to a memory frame

 Initial access to the file generates a page fault
 Subsequent accesses are in memory

 read() and write() are “tricked” into going to memory rather than the disk
 The on-disk file may be updated later, upon closing, etc.

 Memory mapping is via special system calls or by default
 e.g., Solaris memory maps all files (in user or kernel space)

 Multiple processes may map the same file concurrently



Memory Mapping and Sharing



Memory Mapping and Shared Memory
 Memory mapping can be used to implement shared memory

 In Linux, there are separate mechanisms for memory
mapping and shared memory

 mmap() vs. shmget(), etc.
 In Windows shared memory is implemented with memory

mapping as in the diagram above



Memory-Mapped I/O

 To access I/O devices, one can set aside
ranges of memory addresses

 Loads/Stores to these addresses cause
interaction with the device

 Convenient because then all memory-
mapped I/O devices look similar



Conclusion

 Virtual Memory:
 A process can be partially in memory

 Two key issues:
 Page replacement
 Frame allocation

 The thrashing problem and its solutions
 Memory-mapping for files or I/O
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