
ICS332
Operating Systems

Mass-Storage

Magnetic Disks
 Magnetic disks are (still) the most common secondary

storage devices today
 They are “messy”

 Errors, bad blocks, missed seeks, moving parts
 And yet, the data they hold is critical
 The OS used to hide all the “messiness” from higher-level

software
 Programs shouldn’t have to know anything about the way

the disk is built
 This has been done increasingly with help from the hardware

 i.e., the disk controller
 What do disks look like?

Disk Structure

Disk Access
 A disk requires a lot of information for an access

 Head #, sector #, track #, etc.

 Disks today are more complicated than the simple picture
 e.g., sectors of different sizes to deal with varying densities and radial speeds

with respect to the distance to the spindle

 Nowadays, disks comply with standard interfaces
 EIDE, ATA, SATA, USB, Fiber Channel, SCSI

 The disk, in these interfaces, is seen as an array of logical blocks (512
bytes)

 The device, in hardware, does the translation between the block # and
the platter #, sector #, track #, etc.

 This is good:
 The kernel code to access the disk is straightforward
 The controller can do a lot of work, e.g., transparently hiding bad blocks

 The cost is that some cool optimizations that the kernel could perhaps
do are not possible, since all its hidden from it

Network-Attached Storage
 Typically, one thinks of a disk as attached to a host (i.e., a computer)

 called “host-attached storage”

 However, it is often convenient to think of compute resources and
storage resources as separate
 e.g., Web servers that answer http requests vs. the database that holds web

application records

 One doesn’t have to think of a disk as within a host, but as an
“appliance” that can be put on a network
 These appliances are accessed over the network, using some standard

protocol (e.g., NFS + RPC)
 No more, say, SCSI interfaces and SCSI ports, but instead network protocols

and network cards
 Although there is a SCSI interface (SCSI over IP), making the host unaware that it’s

accessing storage over the network

 This is called Network-Attached Storage (NAS)
 Many appliances sold by many vendors, and pretty cheaply
 e.g., 2TB NAS on Amazon around $80 in 2016

Network-Attached Storage

Storage-area Networks
 One drawback of NAS is that the network can be overloaded

with I/O requests
 Not a big deal if the applications/users don’t use the network much

 A Storage-area Network (SAN) is a private network for
network-attached storage devices

Disk Performance
 We’ve said many times that disks are slow
 Disk request performance depends on three steps

 Seek - moving the disk arm to the correct cylinder
 Depends on how fast disk arm can move (increasing very

slowly over the years)

 Rotation - waiting for the sector to rotate under the head
 Depends on rotation rate of disk (increasing slowly over the

years)

 Transfer - transferring data from surface into disk
controller electronics, sending it back to the host

 Depends on density (increasing rapidly over the years)

 When accessing the disk, the OS and controller try
to minimize the cost of all these steps

Disk Scheduling
 Just like for the CPU, one must schedule disk activities
 The OS receives I/O requests from processes, some for the disk
 These requests consist of

 Input or output
 A disk address
 A memory address
 The number of bytes (in fact sectors) to be transferred

 Given how slow the disk is and how fast processes are, it is
common for the disk to be busy when a new request arrives

 The OS maintains a queue of pending disk requests
 Processes are in the blocked state and placed in the device’s queue

maintained by the kernel

 After a request completes, a new request is chosen from the
queue

 Question: which request should be chosen?

Seek Time
 Nowadays, the average seek time is in orders of

milliseconds
 Swinging the arm back and forth takes time

 This is an eternity from the CPU’s perspective
 2 GHz CPU
 5ms seek time
 10 million cycles!

 A good goal is to minimize seek time
 i.e., minimize arm motion
 i.e., minimize the number of cylinders the head travels over

Credit: Alpha six

First Come First Serve (FCFS)

 FCFS: as usual, the simplest

(cylinder #)

head movement:
640 cylinders

Shortest Seek Time First (SSTF)
 SSTF: Select the request that’s the closest

to the current head position
(cylinder #)

head movement:
236 cylinders

SSTF

 SSTF is basically SJF (Shortest job First),
but for the disk

 Like SJF, it may cause starvation
 If the head is at 80, and if there is a constant

stream of requests for cylinders in [50,100],
then a request for cylinder 200 will never be
served

 Also, it is not optimal in terms of number of
cylinders
 On our example, it is possible to achieve as

low as 208 head movements

SCAN Algorithm
 The head goes all the way up and down, just like an elevator

 It serves requests as it reaches each cylinder

(cylinder
#)

head movement:
208 cylinders

SCAN Algorithm
 There can be no starvation with SCAN
 Moving the head from one cylinder to the next takes little time

and is better than swinging back and forth
 One small problem: After reaching one end, assuming requests

are uniformly distributed, when the head reverses direction it
will find very few requests initially
 Because it just served them on the way up
 Not quite like an elevator in this respect

 This leads to non-uniform wait times
 Requests that just missed the head close to one end have to wait a

long time

 Solution: C-SCAN
 When the head reaches one end, it “jumps” to the other end instead of

reversing direction
 Just as if the cylinder were organized in a circular list

C-SCAN

(cylinder #)

head movement:
236 cylinders

Disk Scheduling Recap
 As usual, there is no “best” algorithm

 Highly depends on the workload

 Do we care?
 For home PCs, there aren’t that many I/O requests, so probably

not
 For servers, disk scheduling is crucial

 And SCAN-like algorithms are “it”

 Modern disks implement the disk scheduling themselves
 SCAN, C-SCAN
 Also because the OS can’t do anything about rotation latency,

while the disk controller can
 It’s not all about minimizing seek time

 However, the OS must still be involved
 e.g., not all requests are created equal

Disk Reliability

 Disks are not reliable
 MTTF (Mean Time To Failure) is not infinite
 And failures can be catastrophic

 Yearly “Hard drive reliability” studies
 Google looked at over 100,000 disks in

2007 and looked at failure statistics

 Let’s look at one of their graphs

Disk Reliability

Disks are Cheap

RAID
 Disks are unreliable, slow, but cheap
 Simple idea: let’s use redundancy

 Increases reliability
 If one fails, you have another one (increased perceived MTTF)

 Increases speed
 Aggregate disk bandwidth if data is split across disks

 Redundant Array of Independent Disks
 The OS can implement it with multiple bus-attached disks
 A RAID controller in hardware
 A “RAID array” as a stand-alone box

RAID Techniques

 Data Mirroring
 Keep the same data on multiple disks

 Every write is to each mirror, which takes time

 Data Striping
 Keep data split across multiple disks to allow

parallel reads
 e.g., read bits of a byte from 8 disks

 Error-Code Correcting (ECC) - Parity Bits
 Keep information from which to reconstruct lost

bits due to a drive failing

 These techniques are combined at will

RAID Levels

 Combinations of the techniques are called
“levels”
 More of a marketing tool, really

 You should know about common RAID
levels, i.e.: 0, 1, 1+0, 0+1, 5, 5+0, 6, 6+0
 The book talks about all of them

 but for level 2, which is not used

RAID 0

 Data is striped across multiple disks
 Using a fixed strip size

 Gives the illusion of a larger disk with high
bandwidth when reading/writing a file
 Accessing a single strip is not any faster

 Improves performance, but not reliability
 Useful for high-performance applications

RAID 0 Example

 Fixed strip size
 5 files of various sizes
 4 disks

RAID 1

 Mirroring (also called shadowing)
 Write every written byte to 2 disks

 Uses twice as many disks as RAID 0

 Reliability is ensured unless you have
(extremely unlikely) simultaneous failures

 Performance can be boosted by reading
from the disk with the fastest seek time
 The one with the arm the closest to the target

cylinder

RAID 1 Example

 5 files of various sizes
 4 disks

RAID 3
 Bit-interleaved parity

 Each write goes to all disks, with each disk storing one bit
 A parity bit is computed, stored, and used for data recovery

 Example with 4 disks an 1 parity disk
 Say you store bits 0 1 1 0 on the 4 disks
 The parity bit stores the XOR of those bits: (((0 xor 1) xor 1) xor 0) = 0
 Say you lose one bit: 0 ? 1 0
 You can XOR the remaining bits with the parity bit to recover the lost

bit: (((0 xor 0) xor 1) xor 0) = 1
 Say you lose a different bit: 0 1 1 ?
 The XOR still works: (((0 xor 1) xor 1) xor 0) = 0

 Bit-level striping increases performance
 XOR overhead for each write (done in hardware)
 Time to recovery is long (a bunch of XOR’s)

RAID 4 and 5
 RAID 4: Basically like RAID 3, but interleaving it with strips

 A (small) read involves only one disk

 RAID 5: Like RAID 4, but parity is spread all over the disks
as opposed to having just one parity disk, as shown below

 RAID 6: like RAID 5, but allows simultaneous
failures (rarely used)

OS Disk Management

 The OS is responsible for
 Formatting the disk
 Booting from disk
 Bad-block recovery

Physical Disk Formatting
 Divides the disk into sectors
 Fills the disk with a special data structure for each

sector
 A header, a data area (512 bytes), and a trailer

 In the header and trailer is the sector number, and
extra bits for error-correcting code (ECC)
 The ECC data is updated by the disk controller on each

write and checked on each read
 If only a few bits of data have been corrupted, the

controller can use the ECC to fix those bits
 Otherwise the sector is now known as “bad”, which is

reported to the OS

 Typically all done at the factory before shipping

Logical Formatting

 The OS first partitions the disk into one or
more groups of cylinders: the partitions

 The OS then treats each partition as a
separate disk

 Then, file system information is written to
the partitions
 See the File System lecture

Boot Blocks

 Remember the boot process from a
previous lecture
 There is a small ROM-stored bootstrap

program
 This program reads and loads a full bootstrap

stored on disk

 The full bootstrap is stored in the boot
blocks at a fixed location on a boot
disk/partition
 The so-called master boot record

 This program then loads the OS

Bad Blocks

 Sometimes, data on the disk is corrupted
and the ECC can’t fix it

 Errors occur due to
 Damage to the platter’s surface
 Defect in the magnetic medium due to wear
 Temporary mechanical error (e.g., head

touching the platter)
 Temporary thermal fluctuation

 The OS gets a notification

Bad Blocks
 Upon reboot, the disk controller can be told to replace

a bad block by a spare: sector sparing
 Each time the OS asks for the bad block, it is given the

spare instead
 The controller maintains an entire block map

 Problem: the OS’s view of disk locality may be very
different from the physical locality

 Solution #1: Spares in each cylinders and a spare
cylinder
 Always try to find spares “close” to the bad block

 Solution #2: Shuffle sectors to bring the spare next to
the bad block
 Called sector splitting

Solid-State Drives (SSDs)
 Purely based on solid-state memory

 Flash-based: persistent but slow - The
common case

 DRAM-based: volatile but fast

SSDs
 No moving parts!
 Flash SSDs competitive vs. hard drives

 faster startups and reads
 silent, low-heat, low-power
 more reliable
 less heavy
 getting larger and cheaper, close to HDD
 lower lifetime due to write wear off

 Used to be a big deal, but now ok especially for personal computers

 slower writes (????)

 SSDs are becoming more and more mainstream
 The death of HDD is not for tomorrow, but looks much

closer than 5 years ago...

SSD Structure

 The flash cell

SSD Structure

 The page (4KB)

SSD Structure

 The block: 128 pages
(512KB)

Why Slow Writes?
 Major concern: Before being written a page must be

erased... but only blocks can be erased.

Therefore valid pages must be read before being
erased and rewritten...

 SSD writes are/were considered slow because of
write amplification: as time goes on, a write x bytes of
data in fact entails writing y>x bytes of data!!

 Reason:
 The smallest unit that can be read: a 4KB page
 The smallest unit that can be erased: a 512KB block

 Let’s look at this on an example

Write Amplification

 Let’s say we have a 6-page block

 Let’s write a 4KB file

Write Amplification

 Let’s write a 8KB file

 Let’s “erase” the first file
 We can’t erase the file without erasing the block, so

we just mark it as invalid

Write Amplification

 Let’s write a 16KB file
 We have to

 load the whole block into RAM (or controller cache)
 Modify the in-memory block
 Write back the whole block

Write Amplification

 To write 4KB + 8KB + 16KB = 28KB of application
data, we had to write 4KB + 8KB + 24KB = 36KB
of data to the SSD

 As the drive fills up and files get written / modified /
deleted, writes end up amplified

 The controller keeps writing on the SSD until full,
before it attempts any rewrite

 In the end, performance is still good relative to that
of an HDD

 The OS can, in the background, clean up block
with invalid pages so that they’re easily writable
when needed

SSDs vs. HDDs

 SSDs have many advantages of HDDs
 Random read latency much smaller
 SSDs are great at parallel read/write
 SSDs are great at small writes
 SSDs are great for random access in general

 Which is typically the bane of HDDs

 Note that not all SSDs are made equal
 Constant innovations/improvements

Conclusion

 HDDs are slow, large, unreliable, and cheap
 Disk scheduling by the OS/controller tries to help

with performance
 i.e., reduce seek time

 Redundancy is a way to cope with slow and
unreliable HDDS

 SSDs provide a radically novel approach that may
very well replace HDDs in the future
 The two are likely to coexist for years to come

 The OS is involved in disk management functions,
but with a lot of help from the drive controllers

	Mass-Storage
	Magnetic Disks
	Disk Structure
	Disk Access
	Network-Attached Storage
	Network-Attached Storage
	Storage-area Networks
	Disk Performance
	Disk Scheduling
	Seek Time
	First Come First Serve (FCFS)
	Shortest Seek Time First (SSTF)
	SSTF
	SCAN Algorithm
	SCAN Algorithm
	C-SCAN
	Disk Scheduling Recap
	Disk Reliability
	Disk Reliability
	Disks are Cheap
	RAID
	RAID Techniques
	RAID Levels
	RAID 0
	RAID 0 Example
	RAID 1
	RAID 1 Example
	RAID 3
	RAID 4 and 5
	OS Disk Management
	Physical Disk Formatting
	Logical Formatting
	Boot Blocks
	Bad Blocks
	Bad Blocks
	Solid-State Drives (SSDs)
	SSDs
	SSD Structure
	SSD Structure
	SSD Structure
	Why Slow Writes?
	Write Amplification
	Write Amplification
	Write Amplification
	Write Amplification
	SSDs vs. HDDs
	Conclusion

