
ICS332
Operating Systems

File System
Implementation

File System Implementation
 The file system should provide an

efficient implementation of the
interface it defines
 storing, locating, retrieving data

 The problem: define data structures
and algorithms to map the logical FS
onto the disk

 some data structures live on disk
 some data structures live (temporarily)

in memory
 Typical layer organization:

 Good for modularity and code re-use
 Bad for overhead

 Some layers are hardware, some
are software, some are a
combination

File System Implementation

 I/O Control
 Device drivers and interrupt

handlers
 Input from above:

 Read physical block #43
 Write physical block #124

 Output below:
 Writes into device controller’s

memory to enact disk reads
and writes

 React to relevant interrupts

File System Implementation

 Basic file system
 Allocates/maintains various

buffers that contain file-system,
directory, and data blocks

 These buffers are caches and
are used for enhancing
performance

 Input from above:
 Read physical block #43
 Write physical block #421

 Output below:
 Read physical block #43
 Write physical block #421

File System Implementation

 File-organization module
 Knows about logical file blocks

(from 0 to N) and corresponding
physical file blocks: it performs
translation

 It also manages free space
 Input from above:

 Read logical block 3
 Write logical block 17

 Output below:
 Read physical block 43
 Write physical block 421

File System Implementation
 Logical file system

 Keep all the meta-data
necessary for the file system

 i.e., everything but file content
 It stores the directory structure
 It stores a data structure that

stores the file description (File
Control Block - FCB)

 Name, ownership, permissions
 Reference count, time stamps,

pointers to other FBCs
 Pointers to data blocks on disk

 Input from above:
 Open/Read/Write filepath

 Output to below:
 Read/Write logical blocks

File Systems
 Most OSes support many file systems

 e.g., the ISO 9660 file system standard for CD-ROM
 UNIX:

 UFS (UNIX FS), based on BFFS (Berkeley Fast FS)
 Windows:

 FAT, FAT32, and NTFS
 Basic Linux supports 40+ file systems

 Standard: ext2 and ext3 (Extended FS)
 An active area of research and development

 Distributed File Systems
 Not new, but still a lot of activity

 High-Performance File Systems
 The Google File System

File System Data Structures
 The file system comprises data structures
 On-disk structures:

 An optional boot control block
 First block of a volume that stores an OS
 boot block in UFS, partition boot sector in NTFS

 A volume control block
 Contains the number of blocks in the volume, block size, free-block count, free-block

pointers, free-FCB count, FCB-pointers
 superblock in UFS, master file table in NTFS

 A directory
 File names associated with an ID, FCB pointers

 A per-file FCB
 In NTFS, the FCB is a row in a relational database

 In-memory structures:
 A mount table with one entry per mounted volume
 A directory cache for fast path translation (performance)
 A global open-file table
 A per-process open-file table
 Various buffers holding disk blocks “in transit” (performance)

Virtual File System
 You’ll hear of VFS (Virtual File System)
 This is simply about software engineering (modularity and code-reuse)

 To support multiple types of FS, the OS expects a specific interface, the VFS
 Each FS implementation must expose the VFS interface

Directory Implementation

 Linear List
 Simply maintain an on-disk doubly-linked list of

names and pointers to FCB structures
 The list can be kept sorted according to file

name
 Upon deletion of a file, the corresponding entry

can be recycled (marked unused or moved to a
list of free entries)

 Problem: linear search is slow
 Hash Table

 A bit more complex to maintain
 Faster searches

Allocation Methods

 Question: How do we allocate disk blocks to files?
 The simplest: Contiguous Allocation

 Each file is in a set of contiguous
blocks

 Good because sequential access
causes little disk head movement, and
thus short seek times

 The directory keeps track of each
file as the address of its first block
and of its length in blocks

Contiguous Allocation Problems
 Can be difficult to find free space

 Best Fit, First Fit, etc.
 External fragmentation

 With a big disk, perhaps we don’t care
 Compaction/defrag

 Expensive but doable

 Difficult to have files grow
 Copies to bigger holes under the hood?

 High overhead
 Ask users to specify maximum file sizes?

 Inconvenient
 High internal fragmentation

 Create a linked list of file chunks
 Called an extent

Linked Allocation
 A file is a linked-list of disk

blocks
 Blocks can be anywhere

 The directory points to the first
and last block of the files

 Pointer between internal blocks
are kept on disk and “hidden”

 Solves all the problems of
contiguous allocation

 no fragmentation
 files can grow

Linked Allocation Problems
 Great for sequential access but not so much for direct

access
 A direct access requires quite a bit of pointer jumping

 meaning disk seeks (remember: data structure is on disk!)

 Wastes space
 Say each pointer is 5 bytes, and each block is 512 bytes, then

0.78% of the disk stores pointers instead of data
 Easy to solve by coalescing blocks together, i.e., allowing for

bigger blocks
 But at the cost of larger internal fragmentation

 Poor reliability
 If a pointer is lost or damaged, then the file is unrecoverable
 Can be fixed with a double-linked list, but increases

overhead

The FAT System

 The File-Allocation Table (FAT)
scheme implements block linking
with a separate table that keeps
track of all links

 Solves the problem of having all
pointers scattered over the disk

 Hence much quicker pointer jumping

 Finding a free block is simple: just
find the first 0 entry in the table

 The FAT can be cached in memory
to avoid disk seeks altogether

Indexed Allocation
 All block pointers are brought to a

single location: the index block
 There is one index block per file

 The i-th entry points to the i-th block

 The directory contains the address of
the index block

 Very similar to paging, and same
advantage: easy direct access

 Same advantage, but same problem:
how big is the index block (page
table)?

 Not good to use all our space for
storing index information!

 Especially if many entries are nil
 What if the index is bigger than a

block? (remember page table pages)

 We had one page table per process,
and now one index block per file!!

 There are several solutions

Indexed Allocation

 Linked index:
 To allow for an index block to span multiple disk blocks,

we just create a linked list of disk blocks that contain
pieces of the full index

 e.g., the last word in the first disk block of the index block
is the address of the disk block that contains the next
piece of the index block (easy, right?)

 This adds complexity, but can accommodate any file
size

 Remember that disk space is not as costly as RAM
space, and that the disk is very slow

 Therefore, trading off space for performance and
allowing for large indices is likely a much better trade
off than it would be for RAM

Indexed Allocation

 Multilevel index:
 Just like a hierarchical page table
 If we have 512-byte blocks, and 4-byte pointers, then

we could store 128 entries in a block
 A 3-level scheme can then allow for 1GB files
 A 4-level scheme can then allow for 128GB files

M

outer-index

index table file

Indexed Allocation

 Combined Index:
 For a small file it seems a waste to keep a

large index
 For a medium-sized file it seems a waste to

keep multi-level indices
 How about keeping all options open:

 A few pointers to actual disk blocks
 A pointer to a single-level index
 A pointer to a two-level index
 A pointer to a three-level index

 That way small files don’t even use an index

Indexed Allocation

 The UNIX FCB: the inode

Block size = 512 bytes
Pointer = 4 bytes
Max file size = 12*512
 + 128*512

+ 1282*512
+ 1283*512 bytes

12

In-Class Exercise
 Disk blocks are 8KiB, a block pointer is 4 bytes
 What is the maximum file size with the i-node structure?

(give answer as a sum of terms)

In-Class Exercise
 Disk blocks are 8KiB, a block pointer is 4 bytes
 What is the maximum file size with the i-node structure?

 Direct indirect: 12 * 8KiB
 Single indirect: (8KiB / 4) * 8KiB
 Double indirect: (8KiB / 4) * (8KiB / 4) * 8KiB

 Total: 12 * 213 + 211 * 213 + 211 * 211 * 213

 (which is about 32GiB)

Inodes and Directories

 An inode can describe a file or a directory
 A bit says whether it’s one or the other

 An inode for a directory also points to data
blocks

 But these data blocks happen to contain
<name, pointer to inode> pairs

 These data blocks are searched for names
when doing pathname resolution

 The system keeps an in-memory cache of
recent pathname resolutions

Free Space Management
 Question: How do we keep track of free blocks?
 Simple option: Bitmap

 Keep an array of bits, one bit per disk block
 1 means free, 0 means not free
 Good:

 Simple
 Easy to find a free block (we love bitwise instructions)

 e.g., find the first non-zero word

 Bad:
 The bitmap can get huge
 So it may not be fully cachable in memory

 At this point the number of times we said “but we could perhaps
cache it in memory” should bring home the point that RAM space is
really a premium

 This is what NTFS does

Free Space Management

 Another option: Linked List
 Maintain a chain of free blocks,

keeping a pointer to the first block
 Traversing the list could take

time, but we rarely need to do it

 Remember that FAT deals with
free blocks in the data structure
that keeps the “linked-list” of
non-free blocks

Free Space Management

 Another option: Counting
 Simply keep the address of a free block and

the number of free blocks immediately after it
 Saves space

 Entries are longer
 But we have fewer of them

 These entries can be stored in an efficient data
structure so that chunks of contiguous free
space can be identified

 Although we may do non-contiguous space
allocation, it’s always better to have disk spatial
locality for performance

Efficiency and Performance

 There are many efficiency and performance
issues for file systems (Section 11.6)

 Each aspect of the design impacts
performance, hence many clever
implementation tricks

 One well-known example: inode allocation
 inodes are pre-allocated

 When creating a new file, fields can just be filled
in

 inodes are spread all over the disk
 So that a file’s data can be close to its inode, if

at all possible (minimizing seeks)

Efficiency and Performance

 Caching of disk blocks to take advantage
of temporal locality

 Asynchronous writes
whenever possible

 LRU
 Free-behind
 Read-ahead

 Competes with virtual
memory for disk space!

Consistency Checking
 The File System shouldn’t lose data or become

inconsistent
 It’s a fragile affair, with data structure pointers all over the

place, with parts of it cached in memory

 An abrupt shutdown can leave an inconsistent state
 The system was in the middle of updating some pointers
 Part of the cached metadata was never written back to disk

 Consistency can be checked by scanning all the metadata
 Takes a long time, occurs upon reboot if necessary
 A “necessary” bit is kept up-to-date by the system

 Unix: fsck, Windows: chkdsk
 Bottom line: We allow the system to be corrupted, and we

later attempt repair

Journaling
 Problems with consistency checking:

 Some data structure damaged may not be repairable
 Human intervention is needed to repair the data structure
 Checking a large file system takes forever

 Other option: Log-based transaction-oriented FS (Journaling)
 Log-based recovery:

 Whenever the file system metadata needs to be modified, the sequence
of actions to perform is written to a circular log and all actions are
marked as “pending”

 Then the system proceeds with the actions asynchronously
 Marking them as completed along the way

 Once all actions in a transaction are completed, the transaction is
“committed”

 If the system crashes, we know all the pending actions in all non-
committed transactions, so we can undo all committed actions

 And there are not too many of them
 Writing to the log is overhead, but it’s sequential writing to the log file

Conclusion

 File Systems can be seen as part of or
outside the OS

 File Systems are a complex and active
topic
 File System research papers get published all

the time
 Tons of File System development in R&D
 A lot of discussion of what a file system really is

 Can we weaken the semantic and make it easier to
implement?

 Distributed File Systems
 e.g., file systems over p2p networks?

	File System Implementation
	File System Implementation
	File System Implementation
	File System Implementation
	File System Implementation
	File System Implementation
	File Systems
	File System Data Structures
	Virtual File System
	Directory Implementation
	Allocation Methods
	Contiguous Allocation Problems
	Linked Allocation
	Linked Allocation Problems
	The FAT System
	Indexed Allocation
	Indexed Allocation
	Indexed Allocation
	Indexed Allocation
	Indexed Allocation
	In-Class Exercise
	In-Class Exercise
	Inodes and Directories
	Free Space Management
	Free Space Management
	Free Space Management
	Efficiency and Performance
	Efficiency and Performance
	Consistency Checking
	Journaling
	Conclusion

