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File System Implementation
 The file system should provide an

efficient implementation of the
interface it defines
 storing, locating, retrieving data

 The problem: define data structures 
and algorithms to map the logical FS
onto the disk

 some data structures live on disk
 some data structures live (temporarily)

in memory
 Typical layer organization:

 Good for modularity and code re-use
 Bad for overhead

 Some layers are hardware, some
are software, some are a
combination



File System Implementation

 I/O Control
 Device drivers and interrupt

handlers
 Input from above:

 Read physical block #43
 Write physical block #124

 Output below:
 Writes into device controller’s

memory to enact disk reads
and writes

 React to relevant interrupts



File System Implementation

 Basic file system
 Allocates/maintains various

buffers that contain file-system,
directory, and data blocks

 These buffers are caches and
are used for enhancing
performance

 Input from above:
 Read physical block #43
 Write physical block #421

 Output below:
 Read physical block #43
 Write physical block #421 



File System Implementation

 File-organization module
 Knows about logical file blocks

(from 0 to N) and corresponding
physical file blocks: it performs
translation

 It also manages free space
 Input from above:

 Read logical block 3
 Write logical block 17

 Output below:
 Read physical block 43
 Write physical block 421



File System Implementation
 Logical file system

 Keep all the meta-data 
necessary for the file system

 i.e., everything but file content
 It stores the directory structure
 It stores a data structure that

stores the file description (File
Control Block - FCB)

 Name, ownership, permissions
 Reference count, time stamps,

pointers to other FBCs
 Pointers to data blocks on disk

 Input from above:
 Open/Read/Write filepath

 Output to below:
 Read/Write logical blocks



File Systems
 Most OSes support many file systems

 e.g., the ISO 9660 file system standard for CD-ROM
 UNIX:

 UFS (UNIX FS), based on BFFS (Berkeley Fast FS)
 Windows:

 FAT, FAT32, and NTFS
 Basic Linux supports 40+ file systems

 Standard: ext2 and ext3 (Extended FS)
 An active area of research and development

 Distributed File Systems
 Not new, but still a lot of activity

 High-Performance File Systems
 The Google File System



File System Data Structures
 The file system comprises data structures
 On-disk structures:

 An optional boot control block
 First block of a volume that stores an OS
 boot block in UFS, partition boot sector in NTFS

 A volume control block
 Contains the number of blocks in the volume, block size, free-block count, free-block

pointers, free-FCB count, FCB-pointers
 superblock in UFS, master file table in NTFS

 A directory
 File names associated with an ID, FCB pointers

 A per-file FCB
 In NTFS, the FCB is a row in a relational database

 In-memory structures:
 A mount table with one entry per mounted volume
 A directory cache for fast path translation (performance) 
 A global open-file table
 A per-process open-file table
 Various buffers holding disk blocks “in transit” (performance)



Virtual File System
 You’ll hear of VFS (Virtual File System)
 This is simply about software engineering (modularity and code-reuse)

 To support multiple types of FS, the OS expects a specific interface, the VFS
 Each FS implementation must expose the VFS interface



Directory Implementation

 Linear List
 Simply maintain an on-disk doubly-linked list of

names and pointers to FCB structures
 The list can be kept sorted according to file

name
 Upon deletion of a file, the corresponding entry

can be recycled (marked unused or moved to a
list of free entries)

 Problem: linear search is slow
 Hash Table

 A bit more complex to maintain
 Faster searches



Allocation Methods

 Question: How do we allocate disk blocks to files?
 The simplest: Contiguous Allocation

 Each file is in a set of contiguous
blocks

 Good because sequential access
causes little disk head movement, and
thus short seek times

 The directory keeps track of each
file as the address of its first block
and of its length in blocks



Contiguous Allocation Problems
 Can be difficult to find free space

 Best Fit, First Fit, etc.
 External fragmentation

 With a big disk, perhaps we don’t care
 Compaction/defrag

 Expensive but doable

 Difficult to have files grow
 Copies to bigger holes under the hood?

 High overhead
 Ask users to specify maximum file sizes?

 Inconvenient
 High internal fragmentation

 Create a linked list of file chunks
 Called an extent



Linked Allocation
 A file is a linked-list of disk

blocks
 Blocks can be anywhere

 The directory points to the first
and last block of the files

 Pointer between internal blocks
are kept on disk and “hidden”

 Solves all the problems of
contiguous allocation

 no fragmentation
 files can grow



Linked Allocation Problems
 Great for sequential access but not so much for direct

access
 A direct access requires quite a bit of pointer jumping

 meaning disk seeks (remember: data structure is on disk!)

 Wastes space
 Say each pointer is 5 bytes, and each block is 512 bytes, then

0.78% of the disk stores pointers instead of data
 Easy to solve by coalescing blocks together, i.e., allowing for

bigger blocks
 But at the cost of larger internal fragmentation

 Poor reliability
 If a pointer is lost or damaged, then the file is unrecoverable
 Can be fixed with a double-linked list, but increases

overhead 



The FAT System

 The File-Allocation Table (FAT)
scheme implements block linking
with a separate table that keeps
track of all links

 Solves the problem of having all
pointers scattered over the disk

 Hence much quicker pointer jumping

 Finding a free block is simple: just
find the first 0 entry in the table

 The FAT can be cached in memory
to avoid disk seeks altogether



Indexed Allocation
 All block pointers are brought to a

single location: the index block
 There is one index block per file

 The i-th entry points to the i-th block

 The directory contains the address of
the index block

 Very similar to paging, and same
advantage: easy direct access

 Same advantage, but same problem:
how big is the index block (page
table)?

 Not good to use all our space for
storing index information!

 Especially if many entries are nil
 What if the index is bigger than a

block?  (remember page table pages)

 We had one page table per process,
and now one index block per file!!

 There are several solutions



Indexed Allocation

 Linked index:
 To allow for an index block to span multiple disk blocks,

we just create a linked list of disk blocks that contain
pieces of the full index

 e.g., the last word in the first disk block of the index block
is the address of the disk block that contains the next
piece of the index block (easy, right?)

 This adds complexity, but can accommodate any file
size

 Remember that disk space is not as costly as RAM
space, and that the disk is very slow

 Therefore, trading off space for performance and
allowing for large indices is likely a much better trade
off than it would be for RAM



Indexed Allocation

 Multilevel index:
 Just like a hierarchical page table
 If we have 512-byte blocks, and 4-byte pointers, then

we could store 128 entries in a block
 A 3-level scheme can then allow for 1GB files
 A 4-level scheme can then allow for 128GB files

M

outer-index

index table file



Indexed Allocation

 Combined Index:
 For a small file it seems a waste to keep a

large index
 For a medium-sized file it seems a waste to

keep multi-level indices
 How about keeping all options open:

 A few pointers to actual disk blocks
 A pointer to a single-level index
 A pointer to a two-level index
 A pointer to a three-level index

 That way small files don’t even use an index



Indexed Allocation

 The UNIX FCB: the inode

Block size = 512 bytes
Pointer = 4 bytes
Max file size = 12*512
        + 128*512 

+ 1282*512 
+ 1283*512 bytes  

12



In-Class Exercise
 Disk blocks are 8KiB, a block pointer is 4 bytes
 What is the maximum file size with the i-node structure?

(give answer as a sum of terms) 



In-Class Exercise
 Disk blocks are 8KiB, a block pointer is 4 bytes
 What is the maximum file size with the i-node structure?

 Direct indirect:   12 * 8KiB
 Single indirect: (8KiB / 4) * 8KiB
 Double indirect: (8KiB / 4) * (8KiB / 4) * 8KiB

 Total:  12 * 213 + 211 * 213 + 211 * 211 * 213

 (which is about 32GiB)



Inodes and Directories

 An inode can describe a file or a directory
 A bit says whether it’s one or the other

 An inode for a directory also points to data
blocks

 But these data blocks happen to contain
<name, pointer to inode> pairs

 These data blocks are searched for names
when doing pathname resolution

 The system keeps an in-memory cache of
recent pathname resolutions



Free Space Management
 Question: How do we keep track of free blocks?
 Simple option: Bitmap

 Keep an array of bits, one bit per disk block
 1 means free, 0 means not free
 Good: 

 Simple
 Easy to find a free block (we love bitwise instructions)

 e.g., find the first non-zero word

 Bad:
 The bitmap can get huge
 So it may not be fully cachable in memory

 At this point the number of times we said “but we could perhaps
cache it in memory” should bring home the point that RAM space is
really a premium

 This is what NTFS does



Free Space Management

 Another option: Linked List
 Maintain a chain of free blocks, 

keeping a pointer to the first block
 Traversing the list could take

time, but we rarely need to do it

 Remember that FAT deals with
free blocks in the data structure
that keeps the “linked-list” of
non-free blocks



Free Space Management

 Another option: Counting
 Simply keep the address of a free block and

the number of free blocks immediately after it
 Saves space

 Entries are longer
 But we have fewer of them

 These entries can be stored in an efficient data
structure so that chunks of contiguous free
space can be identified

 Although we may do non-contiguous space
allocation, it’s always better to have disk spatial
locality for performance



Efficiency and Performance

 There are many efficiency and performance
issues for file systems (Section 11.6)

 Each aspect of the design impacts
performance, hence many clever
implementation tricks 

 One well-known example: inode allocation
 inodes are pre-allocated

 When creating a new file, fields can just be filled
in

 inodes are spread all over the disk
 So that a file’s data can be close to its inode, if

at all possible (minimizing seeks)



Efficiency and Performance

 Caching of disk blocks to take advantage
of temporal locality

 Asynchronous writes
whenever possible

 LRU
 Free-behind
 Read-ahead

 Competes with virtual
memory for disk space!



Consistency Checking
 The File System shouldn’t lose data or become

inconsistent
 It’s a fragile affair, with data structure pointers all over the

place, with parts of it cached in memory

 An abrupt shutdown can leave an inconsistent state
 The system was in the middle of updating some pointers
 Part of the cached metadata was never written back to disk

 Consistency can be checked by scanning all the metadata
 Takes a long time, occurs upon reboot if necessary
 A “necessary” bit is kept up-to-date by the system

 Unix: fsck, Windows: chkdsk
 Bottom line: We allow the system to be corrupted, and we

later attempt repair



Journaling
 Problems with consistency checking:

 Some data structure damaged may not be repairable
 Human intervention is needed to repair the data structure
 Checking a large file system takes forever

 Other option: Log-based transaction-oriented FS (Journaling)
 Log-based recovery:

 Whenever the file system metadata needs to be modified, the sequence
of actions to perform is written to a circular log and all actions are
marked as “pending”

 Then the system proceeds with the actions asynchronously
 Marking them as completed along the way

 Once all actions in a transaction are completed, the transaction is
“committed”

 If the system crashes, we know all the pending actions in all non-
committed transactions, so we can undo all committed actions

 And there are not too many of them
 Writing to the log is overhead, but it’s sequential writing to the log file



Conclusion

 File Systems can be seen as part of or
outside the OS

 File Systems are a complex and active
topic
 File System research papers get published all

the time
 Tons of File System development in R&D
 A lot of discussion of what a file system really is

 Can we weaken the semantic and make it easier to
implement? 

 Distributed File Systems
 e.g., file systems over p2p networks?
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