
ICS 141: Discrete Mathematics I (Fall 2014)

3.1 Algorithms

Searching Algorithms

Linear Search

Linear search finds a element in an list by checking every element in the list one by one until it is
found.

Procedure LinearSearch(x : integer, a1, a2, . . . , an : distinct integers)
1: i := 1
2: while i ≤ n and x 6= ai do
3: i := i+ 1
4: end while
5: if i ≤ n then
6: location := i
7: else
8: location := 0
9: end if

10: return location {location is the subscript of the term that equals x, or is 0 if x is not found}

Binary Search

If a list is in sorted order, a binary search can be performed to quickly find an element in the list.
To find an element in the list, the algorithm will always narrow its search space by a half every
time a comparison is made until the element is found.

Procedure BinarySearch(x : integer, a1, a2, . . . , an : increasing integers)

1: i := 1 {i is left endpoint of search interval}
2: j := n {j is right endpoint of search interval}
3: while i < j do
4: m := b(i+ j)/2c
5: if x > am then
6: i := m+ 1
7: else
8: j := m
9: end if

10: end while
11: if x = ai then
12: location := i
13: else
14: location := 0
15: end if
16: return location {location is the subscript i of the term ai that equals x, or is 0 if x is not

found}

1



ICS 141: Discrete Mathematics I (Fall 2014)

Sorting Algorithms

Bubble Sort

A sorting algorithm where the smaller elements will “bubble” (or “float”) to the beginning of the
list while bigger elements will “sink” to the end of the list.

Procedure BubbleSort(a1, . . . , an : real numbers with n ≥ 2)
1: for i := 1 to n− 1 do
2: for j := 1 to n− i do
3: if aj > aj+1 then
4: interchange aj and aj+1

5: end if
6: end for
7: end for
8: {a1, . . . , an is in increasing order}

Insertion Sort

A sorting algorithm where each element becomes “inserted” into the correct position at every
iteration.

Procedure InsertionSort(a1, . . . , an : real numbers with n ≥ 2)
1: for j := 2 to n do
2: i := 1
3: while aj > ai do
4: i := i+ 1
5: end while
6: m := aj
7: for k := 0 to j − i− 1 do
8: aj−k := aj−k−1

9: end for
10: ai := m
11: end for
12: {a1, . . . , an is in increasing order}

3.1 pg 202 # 13

List all the steps used to search for 9 in the sequence 1, 3, 4, 5, 6, 8, 9, 11 using

a) a linear search.

Note that there are eight numbers, so n = 8.
i = 1, 1 6= 9
i = 2, 3 6= 9
i = 3, 4 6= 9

2



ICS 141: Discrete Mathematics I (Fall 2014)

i = 4, 5 6= 9
i = 5, 6 6= 9
i = 6, 8 6= 9
i = 7, 9 = 9
Stop because 9 was found at i = 7

b) a binary search.

Start with 1, 3, 4, 5, 6, 8, 9, 11 (i = 1, j = 8,m = 4)
Compare the m-th element in the list with 9. In this case m = 4, so compare 9 with 5.

Since 5 < 9, take the second half 6, 8, 9, 11 (i = 5, j = 8,m = 6)
Compare the m-th element in the list with 9. In this case m = 6, so compare 9 with 8.

Since 8 < 9, take the second half 9, 11 (i = 7, j = 8,m = 7)
Compare the m-th element in the list with 9. In this case m = 7, so compare 9 with 9.

Since 9 is not less than 9, take the first half by setting j = 7(= m).
At this moment the algorithm exits the while loop because i is not less than j.
After exiting the loop, compare 9 with the ith element. Since 9 = 9, the algorithms returns
i, which is 7.

3.1 pg 203 # 35

Use the bubble sort to sort 3, 1, 5, 7, 4, showing the lists obtained at each step.

Note that we have 5 numbers, so n = 5
i = 1
(3, 1, 5, 7, 4)→ (1, 3, 5, 7, 4)
(1, 3, 5, 7, 4)→ (1, 3, 5, 7, 4)
(1, 3, 5, 7, 4)→ (1, 3, 5, 7, 4)
(1, 3, 5, 7, 4)→ (1, 3, 5, 4, 7)

i = 2
(1, 3, 5, 4, 7)→ (1, 3, 5, 4, 7)
(1, 3, 5, 4, 7)→ (1, 3, 5, 4, 7)
(1, 3, 5, 4, 7)→ (1, 3, 4, 5, 7)

While we can see that the list is in sorted order, the algorithm does not know that it is correctly
sorted. Hence we keep going until the i-for loop can terminate.

i = 3
(1, 3, 4, 5, 7)→ (1, 3, 4, 5, 7)
(1, 3, 4, 5, 7)→ (1, 3, 4, 5, 7)

3



ICS 141: Discrete Mathematics I (Fall 2014)

i = 4
(1, 3, 4, 5, 7)→ (1, 3, 4, 5, 7)

3.1 pg 203 # 39

Use the insertion sort to sort 3, 1, 5, 7, 4, showing the lists obtained at each step.

Note that the bolded numbers are in sorted order.
3, 1, 5, 7, 4
3, 1, 5, 7, 4
1, 3, 5, 7, 4
1, 3, 5, 7, 4
1, 3, 5, 7, 4
1, 3, 4, 5, 7

4


