
ICS 141: Discrete Mathematics I (Fall 2014)

3.3 Complexity of Algorithms

Commonly Used Terminology for the Complexity of Algorithms

Complexity Terminology
Θ(1) Constant complexity

Θ(log n) Logarithmic complexity
Θ(n) Linear complexity

Θ(n log n) Linearithmic complexity
Θ(nb) Polynomial complexity

Θ(bn), where b > 1 Exponential complexity
Θ(n!) Factorial complexity

3.3 pg 229 # 1

Give a big-O estimate for the number of operations (where an operation is an addition or a multi-
plication) used in this segment of an algorithm.

t := 0
for i := 1 to 3

for j := 1 to 4
t := t + ij

t + ij will result in 2 operations per loop iteration (one multiplication and one addition).
The j-for loop will execute t + ij 4 times.
The i-for loop will execute 3 times.
Since the j-for loop is executed for every iteration for the i-for loop, then we have 2 · 3 · 4 = 24
total operations.
Therefore, the algorithm is O(1) (i.e. constant complexity).

3.3 pg 229 # 3

Give a big-O estimate for the number of operations, where an operation is a comparison or a mul-
tiplication, used in this segment of an algorithm (ignoring comparisons used to test the conditions
in the for loops, where a1, a2, ..., an are positive real numbers).
m := 0
for i := 1 to n

for j := i + 1 to n
m := max(aiaj,m)

For the first iteration of the i-for loop (the outer loop), the j-for loop (the inner loop) will run 2 to
n times (n− 1 times).
For the second iteration of the i-for loop, the j-for loop will run 3 to n times (n− 2 times).
. . .
For the third to the last iteration of the i-for loop, the j-for loop will run n− 1 to n times (2 times).
For the second to the last iteration of the i-for loop, the j-for loop will run from n to n times (1

1



ICS 141: Discrete Mathematics I (Fall 2014)

time).
For the last iteration of the i-for loop, the j-for loop will run 0 times because i + 1 > n.
Now we know that the number of times the loops are run is

1 + 2 + 3 + . . . + (n− 2) + (n− 1) = n(n− 1)/2

So we can express the number of total iterations as n(n− 1)/2.
Since we have two operations per loop (one comparison and one multiplication), we have 2 ·n(n−
1)/2 = n2 − n operations.

So f(n) = n2 − n
f(n) ≤ n2 for n > 1.
Thus, the algorithm is O(n2) with our witnesses C = 1 and k = 1.

3.3 pg 230 #21

What is the effect in the time required to solve a problem when you increase the size of the input
from n to n+ 1, assuming that the number of milliseconds the algorithm used to solve the problem
with input size n is each of these function? [Express you answer in the simplest form possible,
either as a ratio or a difference. Your answer may be a function of n or a constant.]

a) log n

log(n + 1) − log(n) = log((n + 1)/n)
Note that as n grows large, the expression ((n + 1)/n) approaches 1 and that log 1 = 0.
This means that the required time for n + 1 is negligible.

b) 100n

100(n + 1) − 100n = 100n + 100 − 100n = 100
This means that 100 additional ms is required.

c) n2

(n + 1)2 − n2 = n2 + 2n + 1 − n2 = 2n + 1
Additional 2n + 1 ms is required.

d) n3

(n + 1)3 − n3 = n3 + 3n2 + 3n + 1 − n3 = 3n2 + 3n + 1
Additional 3n2 + 3n + 1 ms is required.

e) 2n

2n+1/2n = 2
2 times as long.

g) n!

(n + 1)!/n! = n + 1
n + 1 times as long.

2


