3.3 Complexity of Algorithms

Commonly Used Terminology for the Complexity of Algorithms

Complexity	Terminology
$\Theta(1)$	Constant complexity
$\Theta(\log n)$	Logarithmic complexity
$\Theta(n)$	Linear complexity
$\Theta(n \log n)$	Linearithmic complexity
$\Theta\left(n^{b}\right)$	Polynomial complexity
$\Theta\left(b^{n}\right)$, where $b>1$	Exponential complexity
$\Theta(n!)$	Factorial complexity

3.3 pg 229 \# 1

Give a big- O estimate for the number of operations (where an operation is an addition or a multiplication) used in this segment of an algorithm.

```
t:= 0
for }i:=1\mathrm{ to 3
    for }j:=1\mathrm{ to 4
        t:=t+ij
```

$t+i j$ will result in 2 operations per loop iteration (one multiplication and one addition).
The j-for loop will execute $t+i j 4$ times.
The i-for loop will execute 3 times.
Since the j-for loop is executed for every iteration for the i-for loop, then we have $2 \cdot 3 \cdot 4=24$ total operations.
Therefore, the algorithm is $O(1)$ (i.e. constant complexity).

3.3 pg 229 \# 3

Give a big-O estimate for the number of operations, where an operation is a comparison or a multiplication, used in this segment of an algorithm (ignoring comparisons used to test the conditions in the for loops, where $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers).

```
m:= 0
for }i:=1\mathrm{ to }
    for j:= i + 1 to n
        m:= \boldsymbol{max}(\mp@subsup{a}{i}{}\mp@subsup{a}{j}{},m)
```

For the first iteration of the i-for loop (the outer loop), the j-for loop (the inner loop) will run 2 to n times ($n-1$ times).
For the second iteration of the i-for loop, the j-for loop will run 3 to n times ($n-2$ times).
For the third to the last iteration of the i-for loop, the j-for loop will run $n-1$ to n times (2 times). For the second to the last iteration of the i-for loop, the j-for loop will run from n to n times (1
time).
For the last iteration of the i-for loop, the j-for loop will run 0 times because $i+1>n$.
Now we know that the number of times the loops are run is

$$
1+2+3+\ldots+(n-2)+(n-1)=n(n-1) / 2
$$

So we can express the number of total iterations as $n(n-1) / 2$.
Since we have two operations per loop (one comparison and one multiplication), we have $2 \cdot n(n-$ 1) $/ 2=n^{2}-n$ operations.

So $f(n)=n^{2}-n$
$f(n) \leq n^{2}$ for $n>1$.
Thus, the algorithm is $O\left(n^{2}\right)$ with our witnesses $C=1$ and $k=1$.

3.3 pg 230 \#21

What is the effect in the time required to solve a problem when you increase the size of the input from n to $n+1$, assuming that the number of milliseconds the algorithm used to solve the problem with input size n is each of these function? [Express you answer in the simplest form possible, either as a ratio or a difference. Your answer may be a function of n or a constant.]
a) $\log n$
$\log (n+1)-\log (n)=\log ((n+1) / n)$
Note that as n grows large, the expression $((n+1) / n)$ approaches 1 and that $\log 1=0$.
This means that the required time for $n+1$ is negligible.
b) $100 n$
$100(n+1)-100 n=100 n+100-100 n=100$
This means that 100 additional ms is required.
c) n^{2}
$(n+1)^{2}-n^{2}=n^{2}+2 n+1-n^{2}=2 n+1$
Additional $2 n+1 \mathrm{~ms}$ is required.
d) n^{3}
$(n+1)^{3}-n^{3}=n^{3}+3 n^{2}+3 n+1-n^{3}=3 n^{2}+3 n+1$
Additional $3 n^{2}+3 n+1 \mathrm{~ms}$ is required.
e) 2^{n}
$2^{n+1} / 2^{n}=2$
2 times as long.
g) n !
$(n+1)!/ n!=n+1$
$n+1$ times as long.

