3.2 The Growth of Functions

3.2 pg 216 # 1

Determine whether each of these functions is O(x).

- a) f(x) = 10
- b) f(x) = 3x + 7
- c) $f(x) = x^2 + x + 1$
- d) $f(x) = 5 \log x$

3.2 pg 216 # 5

Show that $(x^2 + 1)/(x + 1)$ is O(x)

3.2 pg 216 # 7

Find the least integer n such that f(x) is $O(x^n)$ for each of these functions.

a) f(x) = 2x³ + x² log x
b) f(x) = 3x³ + (log x)⁴
c) f(x) = (x⁴ + x² + 1)/(x³ + 1)

3.2 pg 217 # 25

Give as good a big-O estimate as possible for each of these functions

a)
$$(n^2 + 8)(n+1)$$

b) $(n \log n + n^2)(n^3 + 2)$

3.2 pg 216 # 21

Arrange the functions \sqrt{n} , 1000 log n, $n \log n$, 2n!, 2^n , 3^n , and $n^2/1000000$ in a list so that each function is big-O of the next function.

3.2 pg 217 # 29

Determine whether each of these functions is $\Omega(x^2)$

- c) $f(x) = x \log x$
- e) $f(x) = 2^x$